

Final Report

September 2009

DURABILITY AND MECHANICAL PROPERTIES OF TERNARY BLEND CONCRETES

Principal investigator: H. R. Hamilton

Research Engineer: Tanya Nash

Research assistants: Nathan Van Etten Enrique Vivas

Department of Civil and Coastal Engineering University of Florida P.O. Box 116580 Gainesville, Florida 32611

Sponsor:

Florida Department of Transportation (FDOT) Michael Bergin, P.E – Project Manager

Contract: UF Project No. 00050495 FDOT Contract No. BD545-35

DISCLAIMER

The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the State of Florida Department of Transportation.

Technical Report Documentation Page

	Teeninear Report Documentat	ion i age	
1. Report No.	2. Government Accession No.	3. Recipient's Catal	og No.
4. Title and Subtitle		5. Report Date	
	perties of Ternary Blend Concretes		tember 2009
		6. Performing Orga	anization Code
7. Author(s)		8. Performing Orga	nization Report No.
	Nash, T, and Hamilton, H. R.		0050495
9. Performing Organization Name and Add University of Florida	ress	10. Work Unit No. (TRAIS)
Department of Civil & Coasta	1 Engineering	11. Contract or Gra	nt No.
P.O. Box 116580	8		SD545-35
Gainesville, FL 32611-6580		(A. T. (A.)	
12. Sponsoring Agency Name and Address			and Period Covered
Florida Department of Transp		F1	nal Report
Research Management Center		10/2	6/04-9/30/09
605 Suwannee Street, MS 30			
Tallahassee, FL 32301-806	54	14. Sponsoring Age	ency Code
15. Supplementary Notes			
16. Abstract	lines required that concrete piles placed in a me	ning any inany and m	ust contain ordinary portland
	lines required that concrete piles placed in a ma e (SF). This blend of PC and supplementary ce		
		mentitious materiais	(SCM) is primarily intended
to produce a durable concrete that is high		l of comontitious me	storials that included ordinary
	lurability of concrete made with a ternary blend bleat furness alog (S) in comparison to the		
	blast furnace slag (S) in comparison to the cong duplicate mixtures) containing varying quan		
	mechanical and durability attributes. The term 20% to (0%) has mainly affected and entries		
	20% to 60% by weight of total cementition		
	%SF were prepared as control mixtures. Half o o compared mixtures prepared with PC that me		
		a the ASTM CISUS	tandard and to those with PC
that met the AASHTO M85 standard prio		acticity commercial	a aroon anlit tangila atranath
	at included compressive strength, modulus of el		
and modulus of rupture. The durability tests conducted were rapid migration test, corrosion of embedded steel, surface resistivity, and bulk diffusion. Finally, X-ray Diffraction (XRD) was used to examine the microstructure of the hydration process of these materials.			
	0% by replacement weight) content had dela		
	of PC) produced a slight decrease ($<10\%$) in ave		
	Γ Class IV (5,500 psi) and Class V (6,500 psi),		
	all of the concrete mixtures containing both F		
control mixture (FA only).	an of the concrete mixtures containing both I	A and 5 was impro	oved compared to that of the
control mixture (PA omy).			
17. Key Word	18. Distribution Statement		
Supplementary cementitious	No restrictions. This document is	s available to th	e public through the
materials, concrete durability,	National Technical Information	Service Sprin	ofield VA 22161
		service, sprin	.g., , , , , , , , , , , , , , , , , , ,
ternary blend, slag cement,			
silica fume			
19. Security Classif. (of this report)	20. Security Classif. (of this page)	21. No. of Pages	22. Price
Unclassified	Unclassified	220	
Form DOT F 1700.7 (8-72) R	eproduction of completed page authorized		

ACKNOWLEDGMENTS

The authors would like to acknowledge and thank the Florida Department of Transportation for providing the funding for this research project. This project was a collaborative effort between the University of Florida and the FDOT State Materials Office Research Laboratory (Gainesville). Special thanks to Mike Bergin, Charles Ishee, and Mario Paredes, FDOT State Materials Office, for their guidance and technical support during the course of the project. Moreover, the authors would like to thank the FDOT State Materials Office Research Laboratory personnel for constructing the specimens and conducting materials testing, especially Charlotte Kasper, Phillip Armand and Sandra Bober, whose help was critical to the completion of this project. The assistance of Elizabeth (Beth) Tuller, Robert (Mitch) Langley and Richard DeLorenzo is gratefully acknowledged. The authors would also like to thank Dr. Valentin Craciun for his guidance and expertise in the XRD analysis and to the Major Analytical Instrumentation Center of the University of Florida Department of Materials Science and Engineering for the use of the XRD instrumentation.

EXECUTIVE SUMMARY

This research project evaluated the use of a ternary blend of cementitious materials that included ordinary portland cement (PC), fly ash (FA), and blast furnace slag (S). The focus of this research was on the durability of concrete produced with varying relative quantities of these materials. Thirty-two ternary and binary mixtures (not including duplicate mixtures) containing varying quantities of FA, S, and SF were prepared to evaluate their effect on the mechanical and durability attributes. The ternary mixtures included PC+FA+S with FA being varied from 10% to 40% and S from 20% to 60% by weight of total cementitious materials. In addition, control mixtures of 80%PC+20%FA and 73%PC+20%FA+7%SF were prepared as control mixtures. Half of the mixtures were Class IV and half were Class V mixtures. In addition, this research also compared mixtures prepared with PC that met the ASTM C150 standard and to those with PC that met the AASHTO M85 standard prior to harmonization.

Mechanical tests were conducted that included compressive strength, modulus of elasticity, compressive creep, split tensile strength, and modulus of rupture. The durability tests conducted were rapid migration test, corrosion of embedded steel, surface resistivity, and bulk diffusion. Finally, X-ray Diffraction (XRD) was used to examine the microstructure of the hydration process of these materials.

Mixtures with higher FA (30 to 40% by replacement weight) content had delayed gains in compressive strength. Increasing quantities of S (and associated decrease of PC) produced a slight decrease (<10%) in average seven-day compressive strength. Specified 28-day concrete strength requirements of Class IV (5,500 psi) and Class V (6,500 psi), however, were exceeded by all of the mixtures. Overall ranking of the durability results indicated that the 20%FA+7%SF and 10%FA+60%S mixtures provided the best resistance to chloride penetration.

TABLE OF CONTENTS

	ECUTIVE SUMMARY	
TAB	BLE OF CONTENTS	vi
LIST	Г OF FIGURES	vii
LIST	Г OF TABLES	X
1	INTRODUCTION	1
2	RESEARCH OBJECTIVES	2
3	LITERATURE REVIEW	3
4	CONCRETE MIXTURE DESIGNS AND SAMPLING	16
5	TEST PROCEDURES	20
6	RESULTS AND DISCUSSION	43
7	SCM PROPORTIONING FOR STRENGTH AND DURABILITY	78
8	DECISION MATRIX	
9	SUMMARY AND CONCLUSIONS	
10	RECOMMENDATIONS	
REF	FERENCES	
APP	PENDIX A – MIXTURE AND TEST TABLES	
APP	PENDIX B – XRD SPECTRUMS	
APP	PENDIX C – COMPRESSIVE STRENGTH DATA	
APP	PENDIX D – TENSILE STRENGTH DATA	144
APP	PENDIX E – MODULUS OF ELASTICITY DATA	154
APP	PENDIX F – CREEP DATA	
	PENDIX G – CHLORIDE SAMPLE DATA AND ANALYSIS	
	PENDIX H – RAPID MIGRATION TEST DATA	
APP	PENDIX I – SURFACE RESISTIVITY TEST DATA	

LIST OF FIGURES

FIGURE 1 GENERAL SCHEMATIC OF A POWDER X-RAY DIFFRACTION INSTRUMENT	12
FIGURE 2 GAS-PROPORTIONAL COUNTER FILLED WITH A GAS AND A CHARGED WIRE	12
FIGURE 3 TYPICAL X-RAY DIFFRACTION PATTERN OF HYDRATED OPC PASTE FOR 1-DAY	
FIGURE 4 GENERAL SCHEMATIC OF BRAGG'S LAW RELATIONSHIP; SHOWING THE INCIDENT BEAM	
ENTERING AT ANGLE Θ and then being reflected off of a lattice plane with spacing	
D	
FIGURE 5 INITIAL CURING OF CAST CONCRETE SPECIMENS	
FIGURE 6 MODULUS OF ELASTICITY TESTING APPARATUS	
FIGURE 7 DIAM-END GRINDER	
FIGURE 8 DIAGRAM OF THE THIRD-POINT LOADING FLEXURE TESTING APPARATUS	
FIGURE 9 INSTRON LOAD FRAME TESTING FLEXURAL STRENGTH	
FIGURE 10 SPLITTING TENSILE STRENGTH TEST	
FIGURE 11 RMT REDUCTION OF ABSOLUTE PRESSURE FOR SAMPLE DESICCATION	
FIGURE 12 CUTTING RMT SAMPLES: A) RMT SAMPLE CUT INTO TWO HALVES, B) CUTTING OF THE	
2-INCH RMT SAMPLE	27
FIGURE 13 RMT SAMPLE PREPARATION. A) SAMPLE BEING PLACED IN THE RUBBER SLEEVE, B)	
SECURING THE SAMPLE WITH STAINLESS STEEL CLAMPS	27
FIGURE 14 RAPID MIGRATION TEST SETUP (NORDTEST NTBUILD 492)	
FIGURE 15 RMT TEST SET-UP SHOWN PRIOR TO BEING IMMERSED IN THE CATHOLYTE SOLUTION	
FIGURE 16 SILVER NITRATE SOLUTION SPRAY METHOD SAMPLE PREPARATION. A) SPECIMEN	
AXIALLY BEING SPLIT, (B) FACES OF SPLIT SAMPLE.	
FIGURE 17 SPLIT SURFACE OF THE SPECIMEN SPRAYED WITH THE SILVER NITRATE SOLUTION	
FIGURE 18 CHLORIDE PENETRATION MEASUREMENT USING THE SILVER NITRATE SOLUTION METHOD	
FIGURE 19 SLICING SAMPLES FOR COMPARISON BETWEEN FM 5-516 AND SILVER NITRATE	
SOLUTION SPRAY CHLORIDE METHODS	
FIGURE 20 SURFACE RESISTIVITY MEASUREMENTS	
FIGURE 21 BULK DIFFUSION SALINE SOLUTION EXPOSURE	
FIGURE 22 ASTM G109 SPECIMEN MOLDS CONTAINING THE REINFORCING BARS AND REFERENCE	
ELECTRODE	
FIGURE 23 ASTM G109 SPECIMEN AFTER EPOXY HAS BEEN APPLIED	
FIGURE 24 ENVIRONMENTAL ROOM CONTAINING THE AUTOMATED MONITORING DEVICE AND	
CORROSION SPECIMENS	
FIGURE 25 ELECTRICAL DIAGRAM OF CORROSION SPECIMENS	
FIGURE 26 CUTTING PATTERN FOR PRISMS	
FIGURE 27 CUTTING PATTERN FOR (A) CEMENT PASTE PUCKS AND (B) CONCRETE CYLINDERS	
FIGURE 28 SAMPLE FROM A CONCRETE CYLINDER (A) AFTER INITIAL CUT (B) AFTER THIN	
SECTIONING WITH WAFER SAW	
FIGURE 29 PREPARATION OF POWDER SAMPLES (A) MORTAR AND PESTLE (B) NO. 200 SIEVE, (C)	
SAMPLE STORAGE (D) DESSICATOR.	40
FIGURE 30 FINAL CONFIGURATION FOR XRD EXAMINATION (A) CEMENT PASTE, (B) CONCRETE, AND	
(C) POWDER	
FIGURE 31 DIMENSIONS AND LAYOUT OF SAMPLE EXAMINED BY XRD	
FIGURE 32 PHILLIPS APD 3720 POWDER XRD INSTRUMENT AT MAIC, UNIVERSITY OF FLORIDA	
FIGURE 33 COMPRESSIVE STRENGTH (7-DAY) CLASS IV MIXTURES	
FIGURE 34 COMPRESSIVE STRENGTH (7-DAY) FOR CLASS V MIXTURES	
FIGURE 35 COMPRESSIVE STRENGTH (28-DAY) FOR CLASS IV MIXTURES	
FIGURE 36 RELATIVE COMPRESSIVE STRENGTH (28-DAY) FOR CLASS IV MIXTURES	
FIGURE 37 COMPRESSIVE STRENGTH (28-DAY) FOR CLASS V MIXTURES	
FIGURE 38 RELATIVE COMPRESSIVE STRENGTH (28-DAY) FOR CLASS V MIXTURES	
FIGURE 39 COMPRESSIVE STRENGTH (365-DAY) FOR CLASS IV MIXTURES	
FIGURE 40 RELATIVE COMPRESSIVE STRENGTH (365-DAY) FOR CLASS IV MIXTURES (* LOW VALUES	10
LIKELY DUE TO TEST PROCEDURES)	49

Every $= 41$ Cover and $= 270$ (207 $= 100$) for $= 20$ (207 $= 100$)	10
FIGURE 41 COMPRESSIVE STRENGTH (365-DAY) FOR CLASS V MIXTURES.	49
FIGURE 42 RELATIVE COMPRESSIVE STRENGTH (365-DAY) FOR CLASS V MIXTURES (* LOW VALUES	50
LIKELY DUE TO TEST PROCEDURES) FIGURE 43 MODULUS OF ELASTICITY FOR CLASS IV MIXTURES WITH ASTM PC	
FIGURE 43 MODULUS OF ELASTICITY FOR CLASS IV MIXTURES WITH ASTM PC FIGURE 44 MODULUS OF ELASTICITY FOR CLASS V MIXTURES WITH ASTM PC	
FIGURE 44 MODULUS OF ELASTICITY FOR CLASS V MIXTURES WITH ASTM PC FIGURE 45 MODULUS OF ELASTICITY FOR CLASS IV MIXTURES WITH ASTM PC	
FIGURE 45 MODULUS OF ELASTICITY FOR CLASS IV MIXTURES WITH AASH TO PC FIGURE 46 MODULUS OF ELASTICITY FOR CLASS V MIXTURES WITH AASH TO PC	
FIGURE 40 MODULUS OF ELASTICITY FOR CLASS V MIXTURES WITH AASHTO FC	
FIGURE 47 MODULUS OF ELASTICITY (365-DAY) FOR CLASS IV MIXTURES	
FIGURE 48 MODULUS OF ELASTICITY (303-DAY) FOR CLASS V MIXTURES	
FIGURE 49 SPLIT TENSILE STRENGTH (28-DAY) FOR CLASS IV MIXTURES	
FIGURE 50 SPLIT TENSILE STRENGTH (28-DAY) FOR CLASS V MIATURES	
FIGURE 52 SPLIT TENSILE STRENGTH (365-DAY) FOR CLASS IV MIXTURES	
FIGURE 52 SPEIT TENSILE STRENGTH (305-DAT) FOR CLASS V MIATURES	
FIGURE 55 MODULUS OF RUPTURE (28-DAY) FOR CLASS IV MIXTURES	
FIGURE 54 MODULUS OF RUPTURE (26-DAY) FOR CLASS IV MIXTURES	
FIGURE 56 MODULUS OF RUPTURE (365-DAY) FOR CLASS IV MIXTURES	
FIGURE 50 MODULUS OF RUPTURE (505-DAT) FOR CLASS V MIXTURES	
FIGURE 57 CREEP COEFFICIENT FOR CLASS IV MIXTURES	
FIGURE 59 BULK DIFFUSION (365 DAY) FOR CLASS IV MIXTURES	
FIGURE 69 BULK DIFFUSION (365 DAY) FOR CLASS IV MIXTURES	
FIGURE 60 BULK DIFFUSION (505 DAT) FOR CLASS V MIXTURES	
FIGURE 62 RMT (56-DAY) FOR CLASS IV MIATURES	
FIGURE 62 RMT (50-DAT) FOR CLASS V MIXTURES	
FIGURE 64 RMT (91-DAY) FOR CLASS IV MIXTURES	
FIGURE 65 SR FOR CLASS IV MIXTURES WITH ASTM PC	
FIGURE 66 SR FOR CLASS V MIXTURES WITH ASTMIT C	
FIGURE 67 SR FOR CLASS V MIATURES WITH ASTMITE	
FIGURE 68 SR FOR CLASS V MIXTURES WITH AASHTO FC	
FIGURE 69 SR (28-DAY) FOR CLASS IV MIXTURES	
FIGURE 70 SR (28-DAY) FOR CLASS V MIXTURES.	
FIGURE 71 COMPARISON OF PEAK INTENSITIES AT D-VALUE = 2.62700 Å FOR THE PILOT STUDY	
MIXES THROUGH 91 DAYS.	71
FIGURE 72 SEM MICROGRAPHS AT 1 DAY (A) MIX 1 (100% PC), (B) MIX 3 (50/50 PC/S), (C) MIX 5	
(50/20/30 PC/FA/S) (D) MIX 6 (30/20/50 PC/FA/S).	73
FIGURE 73 SEM MICROGRAPHS AT 28 DAYS (A) MIX 1 (100% PC), (B) MIX 3 (50/50 PC/S), (C) MIX 5	
(50/20/30 PC/FA/S) (D) MIX 6 (30/20/50 PC/FA/S).	74
FIGURE 74 SEM MICROGRAPHS AT 56 DAYS (A) MIX 1 (100% PC), (B) MIX 3 (50/50 PC/S), (C) MIX 5	
(50/20/30 PC/FA/S) (D) MIX 6 (30/20/50 PC/FA/S).	75
FIGURE 75 XRD SPECTRUMS COMPARING ASTM TB6A5 HARDENED PASTE TO THE SAME	
CONCRETE MIX AT 28 AND 56 DAYS.	77
FIGURE 76 RELATIVE COMPRESSIVE STRENGTH OF CONCRETE AT (A) 7 DAYS, (B) 28 DAYS, AND (C)	
365 DAYS	79
FIGURE 77 DURABILITY COMPARISON FOR CLASS IV WITH ASTM PC	
FIGURE 78 DURABILITY COMPARISON FOR CLASS V WITH ASTMPC	
FIGURE 79 DURABILITY COMPARISON FOR CLASS IV WITH ASHTO PC.	
FIGURE 80 DURABILITY COMPARISON FOR CLASS V WITH AASHTO PC	
FIGURE 81 RELATIVE RESISTANCE TO CHLORIDE PENETRATION.	
FIGURE 82 – AASHTO CLASS IV	
FIGURE 83 – AASHTO CLASS V	
FIGURE 84 – ASTM CLASS IV	
FIGURE 85 – ASTM CLASS V	
FIGURE 86 MIX 1 – 100% CEMENT (CONTROL).	
FIGURE 87 MIX $2 - 70/30$ CEMENT/SLAG	
FIGURE 88 MIX 3 – 50/50 CEMENT/SLAG	
FIGURE 89 MIX 4 – 80/20 CEMENT/FLY As	

FIGURE 90 MIX 5 – 50/20/30 CEMENT / FLY ASH / SLAG	117
FIGURE 91 MIX 6 – 30/20/50 CEMENT / FLY ASH / SLAG	118
FIGURE 92 MIX 1 – 80/20 CEMENT / FLY ASH	119
FIGURE 93 MIX 3 – 60/20/20 CEMENT / FLY ASH / SLAG	119
FIGURE 94 MIX 6 – 40/20/40 CEMENT / FLY ASH / SLAG	120
FIGURE 95 MIX 7 – 40/40/20 CEMENT / FLY ASH / SLAG	120
FIGURE 96 MIX 8 – 30/10/60 CEMENT / FLY ASH / SLAG	121
FIGURE 97 MIX 1 – 80/20 CEMENT / FLY ASH	
FIGURE 98 MIX 3 – 60/20/20 CEMENT / FLY ASH / SLAG	122
FIGURE 99 MIX 6 – 40/20/40 CEMENT / FLY ASH / SLAG	123
FIGURE 100 MIX 7 – 40/40/20 CEMENT / FLY ASH / SLAG	
FIGURE 101 MIX 8 – 30/10/60 CEMENT / FLY ASH / SLAG	124
FIGURE 102 MIX 1 – 80/20 CEMENT / FLY ASH	125
FIGURE 103 MIX 3 – 60/20/20 CEMENT / FLY ASH / SLAG	
FIGURE 104 MIX 6 – 40/20/40 CEMENT / FLY ASH / SLAG	
FIGURE 105 MIX 7 – 40/40/20 CEMENT / FLY ASH / SLAG	
FIGURE 106 MIX 8 – 30/10/60 CEMENT / FLY ASH / SLAG	
FIGURE 107 MIX 1 – 80/20 CEMENT / FLY ASH 28 AND 91 DAYS OF HYDRATION	
FIGURE 108 MIX 3 – 60/20/20 CEMENT / FLY ASH / SLAG	
FIGURE 109 MIX 6 – 40/20/40 CEMENT / FLY ASH / SLAG	129
FIGURE 110 MIX 7 – 40/40/20 CEMENT / FLY ASH / SLAG	
FIGURE 111 MIX 8 – 30/10/60 CEMENT / FLY ASH / SLAG	130

LIST OF TABLES

TABLE 1 PORTLAND CEMENT CLASSIFICATION	9
TABLE 2 PROPORTIONS OF ASTM C150 PORTLAND CEMENT AND SCM MIXING PROPORTIONS	16
TABLE 3 PROPORTIONS OF AASHTO M85 PORTLAND CEMENT AND SCM MIXTURE PROPORTIONS	17
TABLE 4 LABORATORY MATERIALS FOR ALL TESTED MIXTURES	17
TABLE 5 STANDARD METHOD FOR CASTING AND VIBRATING RECTANGULAR BEAM AND G109	
SPECIMENS	19
TABLE 6 TEST VOLTAGE AND DURATION PROPOSED BY HOOTON, THOMAS AND STANISH 2001	26
TABLE 7 SUMMARY TABLE OF PENETRABILITY CATEGORY, PENETRATION DEPTH, COULOMBS	
PASSED AND SURFACE RESISTIVITY	32
TABLE 8 FEASIBILITY STUDY MIX PROPORTIONS (% WT)	36
TABLE 9 CONCRETE MIXTURES IN WHICH X-RAY DIFFRACTION WAS PERFORMED (% WT)	37
TABLE 10 COMPARISON OF DURABILITY TEST RESULTS.	85

1 INTRODUCTION

Until recently, the FDOT Structures Design Guide required that concretes placed in a marine environment must contain ordinary portland cement (PC), fly ash (FA), and silica fume (SF). Current provisions allow substitution of metakaolin or ultrafine FA for SF. This blend of PC and supplementary cementitious materials (SCM) is primarily intended to produce a durable concrete that is highly resistant to the penetration of chlorides. Silica fume's availability, cost, and the potential adverse affect on workability have led to the search for other blends to achieve the chloride resistance necessary to ensure that concrete placed in a marine environment will protect the steel for the service life of the structure. Furthermore, in the interest of sustainable construction practice, other forms of SCM that are more energy efficient to produce than PC should be considered.

Ternary mixes composed of PC, FA, and blast furnace slag (S) have been shown to provide similar mechanical properties to those seen in concrete produced with SF (Li and Zhao 2002). The following report details a study in which concrete mixtures were prepared with varying amounts of S and FA to evaluate the effect on the mechanical and durability attributes comparable to that of PC, FA, and SF. In addition, this research also compared mixtures prepared with PC that met the ASTM C150 standard with mixtures made with PC that meets the AASHTO M85 standard prior to harmonization. Finally, this research also examined the microstructure of the hydration process of these materials.

The report is organized as follows. Chapter two presents the research objectives. Chapter three includes a literature review that focuses on the effect of each SCM in concrete as well as the work involving the use of SCM to formulate ternary blends of cementitious materials. The use of X-Ray Diffraction is also reviewed. Chapter four describes the concrete mixture design and proportions. Chapter five details the test procedures and chapter six provides results and discussion. Chapter seven compiles and compares the results of the tests for mechanical properties and durability.

2 RESEARCH OBJECTIVES

The primary objective of this research was to evaluate the mechanical and durability properties of PC-FA-S mixtures in relation to those of PC-FA-SF mixtures. The primary interest is in the resistance to chloride penetration in a harsh marine environment. In addition, mixtures made with PC conforming to the differing specifications of ASTM C150 and AASHTO M85 will be evaluated. Finally, the development of the microstructure during curing will be examined using X-ray diffraction.

3 LITERATURE REVIEW

This literature review focuses on the current knowledge available related to the use of Portland cement (PC) and the addition or substitution of two supplementary cementitious materials (SCM), which are typically used to enhance the mechanical performance or durability of the concrete. This literature review provides a brief description of Fly Ash (FA), Blast Furnace Slag (S) and Silica Fume (SF) along with their typical effect on concrete material properties. Next, literature that covers the use of ternary blend concretes is reviewed. Finally, the ASTM C150 and AASHTO M85 PC specifications are compared.

3.1 FLY ASH

Fly ash (FA) is created by the precipitation of exhaust gases of coal burning power stations. FA particles are generally spherical in shape, and glassy in texture. The components of FA particles are oxides of silicon, aluminum, iron and calcium. When compared to PC only concretes, the addition of FA has been found to reduce the compressive strength capacity of concrete mixtures at early testing ages, < 28 days (Neville 1995). However, as the age of the concrete increases past 91 days, the compressive strength of concretes containing FA surpasses the compressive strengths of PC only mixtures (Neville 1995). The increases in the concrete compressive strength are created as reacted FA begins to fill the voids within the concrete. The increased density created from reacted FA provides concrete with higher compressive strengths, flexural capacities, and resistance to creep and shrinkage effects. The denser concrete also decreases the rate at which chlorides can enter the interior concrete which provides increased durability for the concrete when placed in marine environments.

The modulus of elasticity of a FA concrete is slightly lower at early ages than PC only concretes. The ultimate modulus of elasticity of FA concrete has been found to be slightly higher than PC only concrete (Land and Best 1982). Land and Best 1982 also state the effects of FA on the overall elastic modulus of a concrete mixture are negligible compared to the effects seen by the type of PC and aggregate used. It is thought that any increases in elastic modulus are due to increases in compressive strength and not chemical changes created by the addition of FA.

When constant load is applied to concrete, typical for creep analysis, FA concretes generally exhibit smaller long term deflections due to the late strength gain created by FA (Cook 1983).

3.2 BLAST FURNACE SLAG

Blast furnace slag (S) is a byproduct created from the production or refinement of iron or both. Blast furnace slag is removed from the molten iron, rapidly cooled and then ground to a specific fineness so that it can be used as a cementitious material. Typically, silica, calcium, aluminum, magnesium and oxygen constitute over 95% of the chemical composition of S (ACI 233R-03). S reacts slowly in water and needs activation by alkaline compounds, such as $Ca(OH)_2$ provided by portland cement. The principal hydration product formed from mixtures of S and PC and water is essentially the same as that of PC hydration, which is calcium-silicate hydrate (CSH) (ACI 233R-03). Similar to FA, compressive strength gains created from the addition of S are initially very slow due to coatings of silica and alumina on each S particle. When compared to PC only concrete, the use of Grade 120 S reduces the compressive strength at early ages (< 7 days), and increases compressive strength after 7 days (Hogan and Muesel 1981).

The denser concrete matrix created from the reaction of S and water improves the bond at the aggregate-paste interface. The increased aggregated-paste interface has been found to increase the tensile strength and modulus of rupture within concrete mixtures (Hogan and Muesel 1981). However, Neville (1995) has stated that the addition of S does not significantly alter the tensile strength of a concrete beyond the relationship between improved compressive strength and tensile strength.

S causes a reduction in the modulus of elasticity for air cured concrete mixes. Mindess et al. (2003) reports that the reduction in elastic modulus is caused by inadequate curing of the interior concrete, which results in high porosity. However, Brooks et al. (1992) has suggested that water cured S concrete does not exhibit any improvements in elastic modulus compared to PC only concretes at early ages. Larger modulus of elasticity values have been found for S concretes moisture cured for periods beyond 28 days.

The increase in interior porosity described by Mindess et al. (2003) will also result in larger creep and shrinkage effects in S and PC concrete mixtures. As S increases the interior porosity, water found within the concrete specimen can escape to the surface at a higher rate which will cause increased creep and dry shrinkage effects at early ages. However, at later ages, shrinkage and creep are not adversely affected by the addition of S into a concrete mixture (Neville 1995).

As previously discussed the addition of S into a concrete will eventually produce a denser microstructure of hydrated cement paste. Furthermore, as the S content increases, the

permeability of the concrete mixture decreases (Hooton and Emery 1990). Therefore, the concrete's ability to resist sulfate attack is increased as S content is increased. The increased concrete matrix density created by S in well hydrated concrete mixtures reduces the penetrability of chloride ions and depth of carbonation (Bakker 1980). Resisting both of these mechanisms helps reduce the amount of corrosion experienced by internal reinforcing steel (Hogan and Meusel 1981).

3.3 SILICA FUME

Silica fume (SF) is a by-product created during the production of silicon metals or ferrosilicone alloys. SF is a highly reactive pozzolanic material that is typically used to replace PC in concrete mixtures. While the addition of SF has been found to be advantageous for both the mechanical and the durability properties in concrete mixtures, its popularity is not widespread due to its high cost and limited production.

Concretes mixed with SF have been found to exhibit higher compressive strengths before 28 days, while providing negligible increases in compressive strength after 28 days (Khatri 1995). However, the moisture conditions present at curing have been found to produce varying long term effects on SF concretes. Wet cured SF concrete gained little compressive strength capacity for up to3 years of age after the initial gain in strength seen at 28 days. Dry cured concrete shows decreasing compressive strengths after the peak value was reached at 3 months (Neville 1995). According to these findings, it is speculated that binary mixtures containing SF and PC have a tendency to dry out.

SF does produce significant changes on flexural and splitting tensile behavior of a concrete beyond the standard proportionality between compressive strength and tensile strength (Luther and Hansen 1989). Concrete that replaces 20% of PC with SF have a typical compressive strength to flexural strength ratios ranging from 0.13 to 0.15. The splitting tensile strength at various ages was found to range from 5.8 to 8.2% of the compressive strength (Hooton 1993). The creep and shrinkage characteristics of concrete are improved by a 5% replacement of PC with SF (Houde et al 1989).

The addition of SF affects the hardened properties of concrete by producing a more homogenous pore structure, decreasing the size of capillary pores and producing a more disconnected pore structure (Neville 1995). As permeability within the concrete microstructure is reduced, the concrete has a greater resistance to chloride penetration. An 8% substitution of PC in a 0.40 water to cement ratio concrete caused the diffusion coefficient to decrease by a factor of 7 (Whiting and Detwiler 1998). The reduction in permeability created by SF has also been found to increases the resistance to sulfate attack in concrete mixtures (Khatri et al 1997). However, an additional increase in sulfate resistance occurs from the pozzolanic reactions with SF as there is a large consumption of calcium hydroxide, the major component in sulfoaluminate corrosion (Mindess et al 2003).

3.4 EFFECTS OF TERNARY BLENDS ON CONCRETE PERFORMANCE

There are two main reasons to blend SCM (Nehdi 2001). The first is to take advantage of particle packing. The use of a SCM to ensure particle sizes are well distributed produces an improved density and reduced pore structure. This increases the compressive strength and resistance to chloride penetration. The second advantage is the synergistic effect of the chemical reactions that are created when using pozzolanic materials.

Prior research into the use of ternary blends composed of PC, FA, and S is limited. The majority of research into the use of ternary blends has involved some combination with SF (PC-SF-FA or PC-SF-S) (Bleszynski et al 2002, Nehdi and Sumner 2002, Popovics 1993, Long et al 2002, Shehata and Thomas 2002, Kahn and Lynsdale 2002, Kahn et al 2002, Thomas et al 1999, Lane and Ozyildirim 1999, Bágel 1998, Jones et al 1997, Menendez et al 2003, Isaia et al 2003, Domone and Soutsos 1995). Other work includes quaternary blends containing all three of the primary SCM (SF-FA-S) (Nehdi and Sumner 2002). SCMs not commonly used in Florida such as limestone fillers (Menendez et al 2003) or rice husk ash (Isaia et al 2003) have also been considered.

The use of ternary blends in high performance concretes is a relatively unexplored field compared to vast research already conducted on binary blends. Currently, there are no code requirements that specify the optimum mixing proportions of ternary blends. Therefore, finding the optimum proportions of ternary blend concretes is often obtained after the testing of numerous trial mixtures (Erdem and Kirca 2007). However, it is reported that after an optimal ternary mixture has been found, the use of ternary blends can provide mechanical and durability properties similar to SF, and PC binary blends. In addition to consideration of mixing proportions, it is recommended that ternary blends should be a combination of low and high surface area supplementary cementitious materials, such as FA and SF (Mehta and Gjoerv 1982).

3.4.1 FLY ASH AND SILICA FUME TERNARY BLENDS

While the addition of FA in concrete mixes is becoming common place in modern engineering, the lack of early strength in FA and PC concretes is still a concern for engineers. Meanwhile, SF has been shown to provide a source of early development strength. However, the use of SF in modern concrete blends is limited due to the high costs of SF itself and the high quantities of super-plasticizer needed to provide adequate workability. Fortunately, research has shown that the combinations of certain additions may provide more benefits for concrete when compared to the use of a single admixture.

Compressive strengths of concretes containing a combination of PC, FA, and SF produce higher compressive strengths at 28 days and later than mixtures containing only PC. However, at 3 and 7 days, ternary mixtures containing both FA and SF produce compressive strengths lower than PC only concretes (Khatri et al 1995). The pozzolanic activity of SF - FA ternary blends, and PC only concrete mixtures were measured through the analysis of the free lime content in each mixture. It was discovered that mixtures containing SF and FA indicated signs of higher pozzolanic activity at 7 and 28 days than PC only concretes (Mehta and Gjoerv 1982).

The flexural strength and elastic modulus of ternary blends increase due to the addition of FA and SF ternary blends. However, all gains in flexural strength and elastic modulus were found to be proportional with the gains found in compressive strength (Khatri et al 1995). The inclusion of FA on mixtures containing SF and PC show superior creep characteristics than those of PC only concrete (Khatri et al 1995). The addition of FA on SF and PC concrete mixtures produces decreased specific creep values than PC only mixtures due to the increases in compressive strength and modulus of elasticity. The calculated specific creep values for SF, FA, and PC ternary blends still produce values higher than SF and PC binary blends. Despite the decrease in specific creep created by the addition of SF and FA in PC concrete mixtures, it has been found that the percentage of FA added to SF and PC concrete mixtures does not affect the specific creep values of a mixture (Khatri et al 1995).

The combination of FA, SF and PC in ternary blends is an effective means to reduce the 2 year pore expansion of a concrete mix below the 0.04% benchmark specified in the Standard Concrete Prism Test (CSA A23.2-14A), which is similar to ASTM C1293 (Shehata and Thomas 2002). The decrease in pore expansion seen by the addition of FA into SF and PC concretes has been found to retard the Alkali Silica Reaction that increases the porosity of concrete with time. The combined use of SF with PC in concrete has been found to produce lower alkalinity levels at early ages, however, SF and PC binary mixtures release an alkali solution back into the concrete due to secondary reactions (Berube et al 1998). Increased alkali concentrations in concrete could potentially cause swelling and expansion in the interior concrete, resulting in cracking. The cracking caused by high alkalinity in the concrete would provide less resistance to corrosion (Neville 1995).

3.4.2 FLY ASH AND SLAG TERNARY BLENDS

Ternary blends containing Fly Ash (FA) and Slag (S) have become increasingly popular as a substitute for Silica Fume (SF) in producing high performance concrete (Li and Zhao 2003). While both S and FA are slower reactive supplementary cementitious materials than SF, S typically reacts faster than FA resulting in higher earlier strengths than FA and PC binary concretes. Unfortunately, there is a dearth of published research papers that present results of the mechanical and durability properties of FA and S ternary blends.

The compressive strength gains seen in FA and S ternary blends at early ages (<28 days) has been found to be similar to PC only concrete. At later testing ages, FA and S ternary blends have been found to out perform PC only concretes. Unfortunately, FA and S ternary blends do not reach the compressive strengths of FA and PC concretes (Li and Zhao 2003). Li and Zhao also report that FA, S, and PC ternary blends have higher modulus of elasticity compared to FA and PC concretes.

The concretes ability to protect against sulfate attack has been found to depend on the permeability performance of the concrete mixture. Ternary blends containing FA, S and PC have been found to outperform PC only and FA and PC concrete mixtures. The increase in durability performance is caused by the ternary blend's ability to pore refinement, and the generation of discontinuities in the pore structure caused by strong pozzolanic reaction (Li and Zhao 2003).

Haque and Chulilung (1990) investigated the use of 'slagment' (65% PC, 35% S) to manufacture structural grade concrete, to characterize ternary blends by replacing a portion of the slagment with FA, to provide performance data of the slagment and slagment with FA under inadequate and non-standard curing conditions, and to explore the effect of specimen size on strength under standard and non-standard curing conditions. Four curing conditions were considered: control; fog curing; 7 days fog curing; and sealed fog curing. The results reported focused on effects on compressive strength, effects of curing, effects of specimen size, and water penetration. It was found that samples cast with slagment increased in strength faster than with PC concrete and that replacement of slagment with FA decreased strength. Maximum water penetration was observed in mixtures of 65% slagment and 35% FA.

Douglas and Pouskouleli 1991 attempted to find empirical equations and ternary diagrams from which the compressive strength may be predicted for any combination of PC, S, and FA. Mixtures with 50% PC and 50% S mixtures produced higher compressive strengths than 50% PC and 50% FA. Mixtures with 50% S and 50% FA performed better at 28 days and

beyond. It was observed from predicted and experimental results that a 66% PC, 17% S, 17% FA performed better than 100% PC after 28 days. It was also observed that a 17% PC, 66% S, 17% FA mixture performed better than a 17% PC, 17% S, 66% FA mix, especially at 28 and 91 days.

Domone and Soutsos (1995) objective was to study the effects of FA and S on the workability, heat of hydration, and long-term strength of high-strength concretes. Since the high strength necessitates a lower binder-water ratio, FA+S+PC and FA+S+PC+SF mixes were tested at water-binder ratios from 0.20 to 0.38. They found that high-slump mixes can be made with a water-binder ratio down to 0.2. High slump, however, is insufficient for description of workability of high-strength concretes in practice. Heat of hydration thermal effects were reduced through the use of FA and S. Long-term strengths of FA and S mixtures may not reach that of 100% PC mixtures when the water-binder ratio is reduced to 0.26 and below. The addition of SF increased the strength of all mixes.

Dehuai and Zhaoyuan (1997) Using seven design points and three cubic polynomial models, the authors established strength predicting equations of mortars with ternary blends by the simplex-centroid design. The simplex-centroid design, introduced by Scheffe in 1958 and later studied for strength effects by Douglas and Stanish, was used with upper and lower bounds of PC, S, and FA proportion. Five experimental checkpoints were used to verify the precision of the strength-predicting equations. At seven days the compressive strength of mortars with a water-cement ratio of 0.44 was almost proportional to the proportion of PC present. S contributed the most to strength gain at both 7 to 28 days and at 28 to 56 days. FA and PC contributed the least, respectively.

3.5 ASTM AND AASHTO SPECIFICATIONS FOR PORTLAND CEMENT

In general, five common classes of cements are available to meet different physical and chemical requirements (Table 1).

Cement Type	Uses
Ι	General purpose
II	Moderate resistance to sulfate attack and
	heat of hydration
III	High-early strength
IV	Low heat of hydration
V	High sulfate resistance

Table 1 Portland cement	classification
-------------------------	----------------

AASHTO and ASTM both have specifications for the physical and chemical attributes of PC. In 2007, the AASHTO M85 and ASTM C150 cement standards were harmonized. Prior to that, however, AASHTO M85 provided the following criteria that were not in ASTM C150:

- A maximum blaine fineness limit ($400 \text{ m}^3/\text{gm}$) for all cement classes
- A maximum tricalcium silicate limit of 58% for Type II cement
- A minimum silicon dioxide limit of 20% for Type II cement
- A processing additions limit of 1% for all cement classes
- No additional amount limestone may be added (ASTM C150 standard allows the addition of up to 5% of high-quality limestone fines in the production process)

By designating a maximum fineness limit for all PC classes, AASHTO M85 ensures coarser PC particles are used in concrete mixtures. The fineness of PC particles has been found to hydrate more rapidly, resulting in higher early strengths. However, the hydration products formed will, in effect, make it more difficult for hydration to proceed at later ages, leading to an ultimate strength lower than desired in some cases (Gebhart 1995). Due to this fact, concretes mixed with AASHTO cements are expected to produce weaker compressive strengths at earlier ages, but have higher ultimate compressive strengths.

This research project used cements that were produced under the old specifications to determine if there were effects on the mechanical and durability properties of the concretes produced using these cements.

3.6 MICROSTRUCTURE

Microstructural examination of ordinary Portland cement mixes (PC) and blended mixes with a single replacement material have been carried out by a number of researchers (Hill 2002, Saeki and Monteiro 2005, Ramlochan et al 2004, Turanli and Bektas 2005, Pattanaik et al 2004, Temiz and Karakeci 2002, Mindess et al 2003). Little research, however, has been conducted on ternary blends at the microstructural level.

In general, early pozzolanic reactions from highly reactive SCM such as SF consumes CH produced by PC (Saeki and Monteiro 2005, Turanli and Bektas 2005, Pattanaik et al 2004, Temiz and Karakeci 2002, Mindess 2001, Diamond 2001, Lea 1970, Taylor 2003). This reaction typically yields the more desirable C-S-H. Overall, however, Saeki (2005) indicates that a "healthy balance must be reached whereby a concrete mix has an appropriate level of admixtures but not at levels that compromise the beneficial effects of calcium hydroxide." The goal of the microscopy work is examine the microstructural effect and CH consumption/production within a ternary blend mix using varying relative proportions of Class F FA and S. Data from x-ray diffraction (XRD) will be used to evaluate the possible benefits and/or detriments of ternary blends based on the amount of CH in each mix.

3.7 Powder X-RAY DIFFRACTION

About 95% of all solid material can be defined as crystalline and concrete is one such material. As the water interacts with the cement, chemical reactions take place that form crystalline and amorphous structures, which ultimately comprise the hardened paste. Which crystals and how they form brings us one step closer to understanding the underlying properties of concrete microstructures.

One way to analyze such microstructures and their formation is through powder x-ray diffraction (XRD). XRD is in instrumental technique that uses a collimated beam of x-rays to uniquely identify the crystalline phases in materials. Overall, it is a fast and reliable method of mineral and crystal identification, accompanied with the capabilities of determining mineral proportions, degree of crystallinity and structural information. However, with all its capabilities, XRD does not provide the quantitative information such that energy dispersive x-ray spectroscopy (EDS) compositional analysis would, nor the qualitative information that can be obtained from the scanning electron microscope.

3.7.1 THEORY AND METHODOLOGY

Three-dimensional crystal structures are defined by their regular, repeating planes of atoms that form a lattice. When a beam of x-rays interact with the planes of the lattice, part of the wave is scattered constructively and creates a unique response from the x-rays, which is dependent on the lattice structure.

The x-rays themselves are generated within a sealed tube that is under vacuum as shown on the left side of Figure 1. Inside this tube, a current is applied to a filament. Electrons accelerated by the applied voltage are driven toward a metal target, commonly made of copper. The x-rays, which have a wavelength that is characteristic of the target is then collimated into a beam and directed onto the surface of the sample. After interacting with the samples, the x-ray signal is detected by a gas-proportional counter.

Figure 2 shows the schematic of a counter filled with a gas, like Xenon, with a wire down the center, which is under 1.5 - 2.0 kV. The gas is ionized by the incident photons and the electrons are accelerated toward the wire affecting its resistance. This signal is then converted

into an amplified voltage and count rate. The gas is ionized by the incident x-ray photons. This accelerates the electrons toward the wire effecting its resistance, which is read and converted into a count rate.

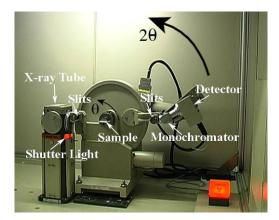


Figure 1 General schematic of a powder x-ray diffraction instrument

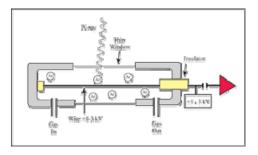


Figure 2 Gas-proportional counter filled with a gas and a charged wire

The angle between the x-ray source, the sample and the detector changes as the detector moves around the sample to pre-set limits. Changing the angle creates different interactions of the x-rays and the crystal lattice of the sample. This information creates a typical x-ray diffraction scan like the one shown in Figure 3.

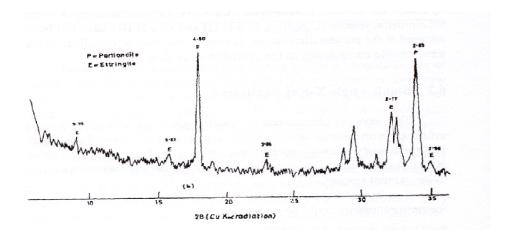


Figure 3 Typical x-ray diffraction pattern of hydrated OPC paste for 1-day

Bragg's Law describes the relationship for the scattering angles and the spacing between the planes of the atom scan with the following equation:

$$n\lambda = 2d\sin\theta$$
 Equation 1

where n is an integer for the order of the diffracted beam, λ is the wavelength of the incident xray beam, d is the distance between adjacent planes of atoms (referred to a d-spacings), and Θ is the angle of incidence of the x-ray beam. Figure 4 shows the general relationship of Bragg's Law as it interacts with planes of a lattice. The position, shape, intensities, and d-spacings of peaks like the ones shown in Figure 3 each have a unique "fingerprint" that can be compared to a reference material; with such information, the identification of a material can be made with confidence.

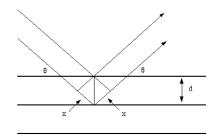


Figure 4 General schematic of Bragg's Law relationship; showing the incident beam entering at angle Θ and then being reflected off of a lattice plane with spacing d.

3.7.2 SOURCES OF ERROR

There are several sources of error that can occur starting with the sample preparation and continuing on to the actual scanning of the sample. The following are some sources of error that one should be aware of prior to scanning a sample and while interpreting XRD results.

- Grinding
 - o Too coarse results in sharp and intense reflections
 - o Too fine results in peak broadening on some or all the peaks
 - o Differential grinding
 - Non-flat surface
 - Different grain sizes
 - o Sieve to ensure grain size and separate the multi-component materials
- Sample Packing
 - o Diffraction is from a volume, not just the surface
 - o Loose samples can have transparency effects
- Surface
 - o Roughness
 - o Curvature
 - o Both can effect the peak positions and breadths of the reflections
- Sample Mounting
 - o Sample area
 - Reflection positions and intensities
 - o Position
 - Give false reflections as a result of the sample holder
- Sample thickness
 - Must be thick enough so the x-rays do not pass through it
 - o Be aware of the minimum thickness needed
 - Path length of x-rays
 - Linear absorption coefficient
 - Packing density
 - X-ray radiation source
- Sample Height Displacement
 - Systematic errors in line positions

- o Largest systematic error effecting peak positions
- o Be sure to include internal standard
- o Analytical processing of data through a large 2Θ range
- Sample Displacement from Center
 - o User set-up error
 - o Affects measured angular positions of the peak
- Peak Broadening
 - Low angle grain boundaries
 - Very small particles
 - Plastic deformation
 - o Compositional non-homogeneity
 - o Large scale lattice strain variation
- Instrumental Errors
 - o Peak intensity
 - Beam not perfectly collimated
 - Scattering occurs over a range of angles and can be different from one step to another
 - o Peak Broadening
 - Detector resolution
 - Allowable sample size
 - Slit Width

As one can see from the list above, there are many things to consider when scanning a sample using XRD. Most instruments are regularly calibrated, which lowers the chances of having an instrumental error occur. There are usually guidelines for each instrument. This will help determine the sample size and placement. The user should take extra care when preparing and mounting the sample to limit all the other types of errors.

4 CONCRETE MIXTURE DESIGNS AND SAMPLING

Concrete mixtures that met the FDOT requirements for class IV and class V mixtures were prepared. The specified compressive strength of Class IV and Class V concretes are 5500 psi and 6500 psi, respectively. AASHTO M85 Type II (Rinker-Miami) and ASTM C150 Type I (Rinker-Columbia) cements were used to create two sets of replicate mixtures for each class. The chemical analysis of the two cements are given in Table 2 shows the complete list of mixtures that contained varying quantities of fly ash (FA), slag (S), and silica fume (SF). Table 4 details the material sources. All concrete batches were mixed with a w/c ratio of 0.35 to ensure that the requirements of FDOT class IV and V mixtures were met. The total cementitious materials for the class IV and V mixtures were 658 and 752 pcy, respectively.

	-	±		011	
Mixture	Mixing	PC	SCM 1	SCM 2	Pozzolan
Name	Date	[pcy]	[pcy]	[pcy]	Name
TB1A4	11/1/05	526.4	-	FA (20%) 131.6	2F (control)
TB1A4-2	3/1/07	526.4	-	FA (20%) 131.6	2F (control)
TB2A4	11/3/05	480.3	SF(7%) 46.06	FA (20%) 131.6	2F7SF
TB2A4-2	3/1/07	480.3	SF(7%) 46.06	FA (20%) 131.6	2F7SF
TB3A4	3/1/05	394.8	S(20%) 131.6	FA (20%) 131.6	2F2S
TB3A4-2	3/1/07	394.8	S(20%) 131.6	FA (20%) 131.6	2F2S
TB4A4	11/10/05	329	S(40%) 263.2	FA (10%) 65.8	1F4S
TB4A4-2	3/1/07	329	S(40%) 263.2	FA (10%) 65.8	1F4S
TB5A4	11/15/05	329	S(20%) 131.6	FA (30%) 197.4	3F2S
TB5A4-2	3/1/07	329	S(20%) 131.6	FA (30%) 197.4	3F2S
TB6A4	2/21/06	263.2	S(40%) 263.2	FA (20%) 131.6	2F4S
TB6A4-2	3/6/07	263.2	S(40%) 263.2	FA (20%) 131.6	2F4S
TB7A4	2/21/06	263.2	S(20%) 131.6	FA (40%) 263.2	4F2S
TB7A4-2	3/6/07	263.2	S(20%) 131.6	FA (40%) 263.2	4F2S
TB8A4	3/30/06	197.4	S(60%) 394.8	FA (10%) 65.8	1F6S
TB8A4-2	3/6/07	197.4	S(60%) 394.8	FA (10%) 65.8	1F6S
TB1A5	3/30/06	601.6	-	FA (20%) 150.4	2F (control)
TB1A5-2	3/6/07	601.6	-	FA (20%) 150.4	2F (control)
TB2A5	5/2/06	548.96	SF(7%) 52.64	FA (20%) 150.4	2F7SF
TB3A5	5/2/06	451.2	S(20%) 150.4	FA (20%) 150.4	2F2S
TB4A5	5/4/06	376	S(40%) 300.8	FA (10%) 75.2	1F4S
TB5A5	5/4/06	376	S(20%) 150.4	FA (30%) 225.6	3F2S
TB6A5	5/9/06	300.8	S(40%) 300.8	FA (20%) 150.4	2F4S
TB7A5	5/9/06	300.8	S(20%) 150.4	FA (40%) 300.8	4F2S
TB8A5	5/11/06	225.6	S(60%) 451.2	FA (10%) 75.2	1F6S

Table 2 Proportions of ASTM C150 portland cement and SCM mixing proportions

Mixture	Mixing	PC	SCM 1	SCM 2	Pozzolan
Name	Date	[pcy]	[pcy]	[pcy]	Name
TB1H4	5/11/06	526.4	-	FA (20%) 131.6	2F (control)
TB1H4-2	3/8/07	526.4	-	FA (20%) 131.6	2F (control)
TB2H4	5/16/06	480.3	SF(7%) 46.06	FA (20%) 131.6	2F7SF
TB3H4	5/16/06	394.8	S(20%) 131.6	FA (20%) 131.6	2F2S
TB3H4-2	3/8/07	394.8	S(20%) 131.6	FA (20%) 131.6	2F2S
TB4H4	5/18/06	329.0	S(40%) 263.2	FA (10%) 65.8	1F4S
TB5H4	5/18/06	329.0	S(20%) 131.6	FA (30%) 197.4	3F2S
TB5H4-2	3/8/07	329.0	S(20%) 131.6	FA (30%) 197.4	3F2S
TB6H4	5/23/06	263.2	S(40%) 263.2	FA (20%) 131.6	2F4S
TB7H4	5/23/06	263.2	S(20%) 131.6	FA (40%) 263.2	4F2S
TB8H4	5/25/07	197.4	S(60%) 394.8	FA (10%) 65.8	1F6S
TB8H4-2	3/8/07	197.4	S(60%) 394.8	FA (10%) 65.8	1F6S
TB1H5	2/1/07	601.6	-	FA (20%) 150.4	2F (control)
TB1H5-2	3/8/07	601.6	-	FA (20%) 150.4	2F (control)
TB2H5	2/1/07	548.9	SF(7%) 52.64	FA (20%) 150.4	2F7SF
TB3H5	2/6/07	451.2	S(20%) 150.4	FA (20%) 150.4	2F2S
TB4H5	2/8/07	376.0	S(40%) 300.8	FA (10%) 75.2	1F4S
TB5H5	2/8/07	376.0	S(20%) 150.4	FA (30%) 225.6	3F2S
TB6H5	2/8/07	300.8	S(40%) 300.8	FA (20%) 150.4	2F4S
TB7H5	2/15/07	300.8	S(20%) 150.4	FA (40%) 300.8	4F2S
TB8H5	2/15/07	225.6	S(60%) 451.2	FA (10%) 75.2	1F6S

Table 3 Proportions of AASHTO M85 portland cement and SCM mixture proportions

Table 4 Laboratory materials for all tested mixtures

Materials	Source
ASTM C150 PC	ASTM C150 Type I (Rinker-Columbia)
AASHTO M85 PC	AASHTO M85 Type II (Rinker-Miami)
Fly Ash	Boral Materials Technologies Inc.
Fly Asi	Fly Ash Class F
Silica Fume	W.R. Grace
Sinca Fuille	Force 10,000D
Slag	Lafarge
Slag	NewCem-Grade 120
Water	Gainesville, FL
Fine Aggregate	Silica Sand
Coarse Aggregate	Crushed Limestone
Air Entrainer	W.R. Grace
All Elutamen	Daravair 1000
Water Reducer	W.R. Grace
water Reducer	WRDA 60
Super Diagticizer	W.R. GRACE
Super Plasticizer	ADVA 140

The relative content of the FA and S were varied to determine the combination that provided the best performance relative to the mixtures with 7% SF. FA was varied from 10% to 40% and S was varied from 20% to 60%.

A total of 2518 samples were cast from 46 separate mixtures at the FDOT State Materials Office (SMO) in Gainesville, Florida. The concrete mixtures were divided into four groups based on the specified compressive strength (FDOT Class IV and V) and PC type (AASHTO M85 and ASTM C150).

The mixtures were prepared in controlled laboratory conditions with a constant air temperature of approximately 78F for each mixture. The size of the concrete batch for each mixture was six cubic feet (0.17 cubic meters). This volume of concrete included the specimens, concrete for quality control testing, and several extra samples. The quality control procedures executed during mixing and casting of the test samples were:

- Standard Test Method for Slump of Hydraulic Cement Concrete (ASTM C143).
- Standard Test Method for Air Content of Freshly Mixed Concrete by the Volumetric Method (ASTM C173).
- Standard Test Method for Temperature of Freshly Mixed Portland Cement Concrete (ASTM C1064).
- Standard Test Method for Density (Unit Weight) of Freshly Mixed Concrete (ASTM C138).

AASHTO T23 procedures were followed for casting concrete cylinders with the exception that a vibrating table was used to compact the fresh concrete. The cylinders were cast and vibrated in two lifts. Rectangular beam specimens were also placed on the vibrating table to ensure complete compaction. The vibration period for each mixture was determined by visual inspection of the first set of samples vibrated. The samples were vibrated until the larger air bubbles ceased breaking through the top surface but before visible segregation occurred, which typically occurred between 15 to 30 seconds. After the samples were cast in their respective molds and the exposed surface finished with a trowel, they were left approximately 24-hours for atmospheric curing. During this period, the exposed surfaces of samples were covered with plastic to minimize evaporation of the water from the surface of the concrete. Finally, the samples were demolded and placed in their particular curing environment until their testing date.

Flexural and G109 rectangular test specimens were also cast in two lifts. After each lift was placed, the vibrating table was used to compact the lift. Before placement of the second

concrete lift in the G109 specimens, a metal wire used to measure corrosion was placed on the layer of fresh concrete. The second and final lift was gently placed to avoid disturbing the wire.

Beam Dimensions [in]	Number of Layers	Number of Vibrator Insertions per Layer	Approximate Depth of Layer
4x4x12	2	1	$\frac{1}{2}$ depth of specimen
4.5x6x11	2	1	¹ / ₂ depth of specimen

Table 5 Standard method for casting and vibrating rectangular beam and g109 specimens

Figure 5 Initial curing of cast concrete specimens

5 TEST PROCEDURES

5.1 FRESH PROPERTIES

Fresh property tests were conducted to determine the effect of varying the SCM quantities. The fresh properties measured for this investigation were density, entrapped air, slump, temperature, and bleed water. This section describes the testing standards and procedures followed during or immediately after concrete mixing.

5.1.1 DENSITY (ASTM C138)

The unit weight fresh property test is often conducted due to its simplicity. Typically, the unit weight is measured during the air content procedure. Unit weight measurements are used to calculate yield estimates. The addition of FA, S, and SF will have little effect on density as entrapped air and aggregate type provide larger changes in unit weight.

5.1.2 AIR CONTENT (ASTM C173)

The air content testing procedure measures the air contained in the mortar fraction of the concrete without being influenced by the air contained within the aggregate pores. One drawback of this procedure is that it can only measure the total air content within the concrete and can not distinguish between entrapped and entrained air. Regardless, it provides a method of evaluating the effects of an air entraining admixture when all entrapped air has been removed.

5.1.3 BLEEDING OF CONCRETE (ASTM C232)

ASTM C232 measures the percentage of water that is pushed towards the surface during consolidation (known as bleeding). The excess water found on the surface of the concrete is measured by filling a metal test beaker with concrete and then vibrating the beaker until the concrete is consolidated. After adequate consolidation has occurred, the concrete surface is carefully troweled and the bleed water is collected and measured.

Bleeding is generally reduced by the use of mineral admixtures. SF and FA have small particles that pack between PC grains, thus reducing the porosity and bleeding (Neville 1995). Some research has shown, however, that S may increase bleeding (Wainwright and Rey 2000).

5.1.4 SLUMP (ASTM C143)

The slump test is a relatively simple field procedure that gives an estimate of concrete workability. This test is typically used as a field measurement for the workability of a concrete mixture and is sometimes used to determine if sufficient superplasticizer has been added to a mixture. While an idealized target slump was not used for this investigation, it is important to

note that a concrete mixture with poor workability has no practical use. All slump readings were taken immediately after the concrete was mixed.

The addition of pozzolans such as FA, S and SF can influence the slump of a concrete mixture due to their particle sizes and shapes. FA, due to its spherical shape, reduces interparticle friction, which results in larger slump measurements. SF and ultrafine FA particles, however, because of their small volume, have high surface areas and tend to increase the cohesiveness of the mixture. This results in a decrease in slump and a need for greater high range water reducer dosages to maintain the target slump. S also decreases the slump because of its angular and plate like particles, which have been found to increase interparticle friction.

5.2 MECHANICAL PROPERTIES

Standard test methods were conducted to determine the mechanical characteristics of the concrete. These characteristics are frequently used in structural design to estimate a variety of other concrete properties. Physical behavior also can be predicted based on the results of these mechanical tests, such as deflection, and prestressing losses.

5.2.1 STATIC MODULUS OF ELASTICITY (ASTM C49)

Modulus of elasticity was tested using ASTM C49 test method. The method calls for each specimen to be loaded to 40% of its ultimate strength. Tests were terminated immediately after reaching the 40% mark, however, to ensure that bond cracking would not occur in the concrete. Figure 6 shows the modulus of elasticity instrumentation and testing apparatus.

Figure 6 Modulus of elasticity testing apparatus

Because of the low stress levels used to test for modulus of elasticity (MOE), the same 4in. diameter x 8-in. long cylinders that were used for MOE could be used for compressive strength tests. An initial test of compressive strength was conducted on the first cylinder from each set of three. Each of the two remaining cylinders was loaded three times to measure the MOE. The initial test, which was primarily for seating, was ignored. The two subsequent tests were then used to calculate an average MOE for that cylinder. An average was then taken of the results from the two cylinders. Testing was conducted at 7, 28, 56, 182 and 365 day ages.

5.2.2 COMPRESSIVE STRENGTH (ASTM C39)

As previously mentioned all compressive strength specimens were used to obtain the MOE data and thus, were tested on the same schedule. The cylinders were ground smooth using a DIAM-end grinder manufactured by M&L Testing Equipment as shown in Figure 7. However, on some occasions caused by grinder malfunction or lack of time, high strength neoprene (8,000 - 12,000psi) was used as a substitute.

Figure 7 DIAM-end grinder

All cylinders were cured in a moist condition at a temperature of $73.4 \pm 3.0^{\circ}$ F, so that free water was maintained on the surface at all times. Each test was completed within an hour of removal from the curing room on a Test Mark load frame. Cylinders were loaded continuously and without shock at 20 to 50 pounds per square inch per second.

5.2.3 CREEP (ASTM C512)

To ensure that a constant load was applied to each specimen a series spring-loaded creep loading frames were fabricated. All creep specimens were cast into 6-in. diameter x 12-in. high concrete cylinders and were covered with plastic until removed from the molds. The specimens were wet cured by placing them in a controlled environment at a constant temperature of 73 ± 3 °F and a constant humidity of 50 ± 4 °F. After adequate curing the cylinders were ground so that they could be stacked in the load frames and loaded. Three concrete cylinders were stacked and loaded to 30% of their maximum load in order to avoid any unexpected compressive failures. ASTM C512 calls for a loading of 40% of maximum load, but a lower load was used to avoid premature failures. Additionally, three unloaded specimens were placed on top of each loading frame in order to provide a control for each mixture. Comparator readings were taken on all specimens at an age of 28, 35, 42, 49, 56, 63, 91, 119, 147, 175, 203 and 251 days.

5.2.4 FLEXURAL STRENGTH (ASTM C78)

Specimens were cast into 4-in. x 4-in. x 14-in. long beams and tested at ages of 28, 56 or 91, and 365 days. Beams were cured in a moist condition at a temperature of $73.4 \pm 3.0^{\circ}$ F, so that free water was maintained on the surface at all times. Each test was completed within an hour of removal from the curing room. Beams were loaded continuously and without shock at a deflection controlled rate of 0.01 inches per minute on an Instron load frame as shown in Figure 8 and Figure 9.

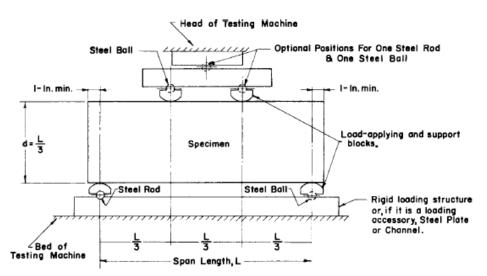


Figure 8 Diagram of the third-point loading flexure testing apparatus

Figure 9 Instron load frame testing flexural strength

5.2.5 Splitting Tensile Strength (ASTM C496)

ASTM C496 test method was used to estimate tensile strength through indirect tension. Specimens cast into 4-in. diameter x 8-in. long cylinders were tested at 3, 7, 28, 91, and 365 days of age. All cylinders were cured in a moist condition at a temperature of $73.4 \pm 3.0^{\circ}$ F, so that free water was maintained on the surface at all times. Each test was completed within an hour of removal from the curing room on a Forney Load frame as shown in Figure 10.

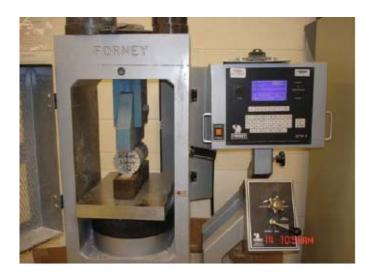


Figure 10 Splitting tensile strength test.

5.3 DURABILITY TESTS

Three methods were chosen to measure the resistance of the various concrete mixtures to the penetration of chloride ions. They were rapid migration (RMT), surface resistivity (SR), and bulk diffusion (BD). In addition, specimens were constructed to test the relative corrosion resistance of reinforcement embedded in the various concrete mixtures (ASTM G109).

5.3.1 RAPID MIGRATION TEST

In the rapid migration test (RMT) an electrical potential is applied to the concrete specimen to force chloride movement through the concrete pore structure. A "migration coefficient" is calculated then using a measured depth of chloride penetration. Consequently, the most important single parameter to calculate RMT diffusion coefficient is the depth of chloride penetration. The RMT was conducted in accordance with NordTest NTBuild 492, including the modifications proposed by Hooton, Thomas and Stanish (2001). Table 6 shows the changes to the standardized procedure included using a different voltage than specified and adjusting the test duration based on the current measured at the start of the test. For each mixture, six 4-in. diameter by 8-in. long concrete cylinders were tested. The cylinders were kept in a moist room with a sustained 100% humidity until the testing day. The procedure was conducted at 56 and 91 days using three specimens per age. The test required a day of preparation. Specimens were removed from the moist room and cut on a water-cooled diamond saw. They were cut first into two halves with a 2-inch thick sample being cut from each of the two halves (see Figure 12). The side of the sample that was nearest to the first cut (middle surface) was the face to be exposed to the chloride solution (catholyte).

After the samples had been adequately prepared, each sample was placed in a desiccation chamber connected to a vacuum pump capable of reducing the pressure to less than 1 mm Hg (133 Pa). The vacuum was maintained for three hours to remove the pore solution from the samples (Figure 11). The container was then filled with boiled de-aerated water until the samples were totally submerged and the pump was left running for an additional hour. The desiccation chamber was return to atmospheric pressure and the samples were left submerged for 18 hours, plus or minus 2 hours.

After the samples were removed from the desiccation chamber, they were fitted into a rubber sleeve and secured with two stainless steel clamps to prevent possible leaks (Figure 13). The rubber sleeve containing the sample was positioned on a plastic support and the cathode and anode stainless steel plates were positioned (Figure 14 and Figure 15). The upper part of the sleeve was filled with a 0.3 N NaOH (1.2% NaOH) anode solution and the complete set-up was

immersed into a plastic container filled with the catholyte solution of 10 percent NaCl. The cathode plate connector was connected to the negative terminal and the anode to the positive terminal of the power supply.

Initial Current @ 60V [mA]	Applied Voltage [Volts]	Test Duration [hr]	Expected Penetration [mm]	V*t [V-hr]
< 10 10-20 20-30 30-40 40-60 60-80 80-120	60	18	< 40	1,080
120-180 180-240	30	18	20-40	540
240-480 480-800	10	18	13-40	180
800-1,200 > 1,200	No Test	No Test	No Test	No Test

Table 6 Test voltage and duration proposed by Hooton, Thomas and Stanish 2001

Figure 11 RMT reduction of absolute pressure for sample desiccation

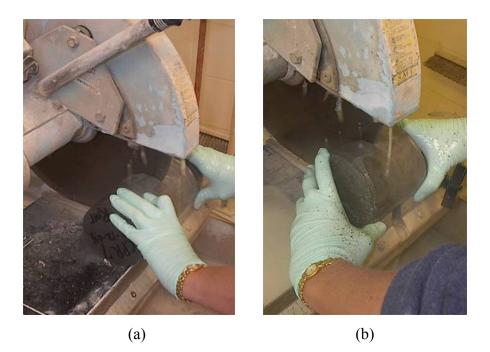


Figure 12 Cutting RMT samples: a) RMT sample cut into two halves, b) Cutting of the 2-inch RMT sample

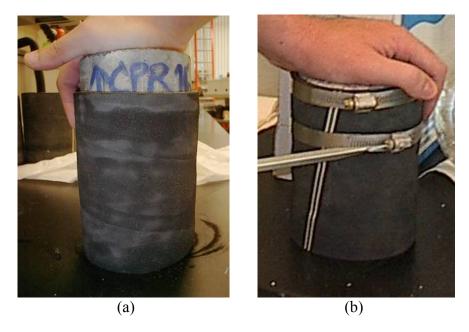


Figure 13 RMT sample preparation. a) Sample being placed in the rubber sleeve, b) Securing the sample with stainless steel clamps

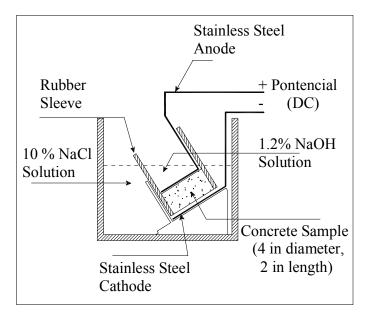


Figure 14 Rapid migration test setup (NordTest NTBuild 492)

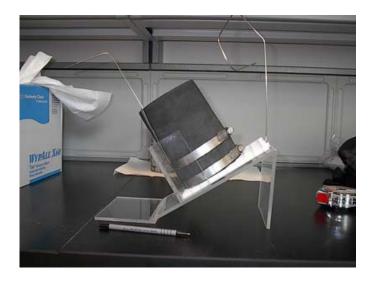


Figure 15 RMT test set-up shown prior to being immersed in the catholyte solution

The power supply was preset to 60-volts and the initial current through each specimen was recorded. The test voltage was then adjusted based on the initial current reading (Table 6) and left running for 18 hours. A data logger system read the temperature of the anolyte solution, charge passed, and current every 5 minutes.

After the monitoring process of 18 hours was completed, the RMT set-up was disassembled and the concrete samples were removed. The specimens were rinsed with tap water and the excess solution was wiped off the surfaces. The standardized method recommends a colorimetric procedure for measuring the depth of chloride infiltration. Therefore, the degree of chloride penetration in each RMT sample was evaluated by applying two methods to the each

sample. The samples were split as shown in Figure 16. Chloride content was measured on one half with FM 5-516 and the silver nitrate solution spray was used on the other half (Figure 19).

For the silver nitrate method, the split section more nearly perpendicular to the end surfaces was selected for the depth of penetration analysis. The freshly split section was sprayed with a 0.1M silver nitrate solution creating a chemical reaction where the chlorides present in the concrete reacted and produced a visible white silver precipitation on the surface (Figure 17). A brownish color was created on the surface where the silver nitrate solution, in the absence of chlorides, reacted instead with the hydroxides present in the concrete (Figure 17).

Calipers were used to measure the location of the line between the two colors. Eight evenly spaced penetration depth readings were taken starting 0.4 inch (10 mm) away from the edges of the specimen to avoid the possible effect due to a non-homogeneous degree of saturation or a possible leakage during the exposure procedure (Figure 18). The readings were averaged to obtain the relative depth of chloride penetration for each specimen.

(a)

(b)

Figure 16 Silver nitrate solution spray method sample preparation. a) Specimen axially being split, (b) Faces of split sample

Figure 17 Split surface of the specimen sprayed with the silver nitrate solution

Figure 18 Chloride penetration measurement using the silver nitrate solution method

Figure 19 Slicing samples for comparison between FM 5-516 and silver nitrate solution spray chloride methods

5.3.2 SURFACE RESISTIVITY TEST

The surface resistivity tests were conducted conforming to Florida Method of Test designation FM 5-578. The surface resistivity was measured on 4-in. diameter by 8-in. long concrete cylinders. Due to its nondestructive nature, the test was performed more frequently than the other electrical tests. For this project, the samples were tested at 1, 3, 7, 14, 28, 56, 91, 182, and 365 days. Commercially available four-probe Wenner array equipment was utilized for resistivity measurements. The model used had wooden plugs in the end of the probes that were pre-wetted with a contact medium to improve the electrical transfer with the concrete surface (Figure 20). The inter-probe spacing was set to 1.5-inch (38-mm) for all measurements.

On the day of testing the samples were removed from their curing environment and the readings were taken under surface wet conditions. Readings were then taken with the instrument placed such that the probes were aligned with the cylinder axis. Four separate readings were taken around the circumference of the cylinder at 90-degrees increments (0°, 90°, 180° and 270°). This process was repeated once again, to obtain a total of eight readings that were then averaged. This minimized possible interference due to the presence of a single aggregate particle obstructing the readings (Chini, Muszynski and Hicks 2003).

Figure 20 Surface resistivity measurements

Research conducted by Whiting and Mohammed (2003) indicate that the electrical conductivity of a concrete is related to its permeability and diffusivity of ions through the concrete. Consequently, the electrical resistance can be used as an estimation of chloride ion penetrability (Hooton et al. 2001). Additional research conducted by Chini et al. (2003) relating

the surface resistivity measurements to Rapid Chloride Penetration tests produced a reference table to aid the interpretation of the surface resistivity results, which was later adopted by FM 5-578. The table categorizes the chloride ion penetrability of a concrete from surface resistivity measurements (Table 7).

Penetrability	Penetration Depth	Coulombs Passed	Surface Resistivity
Category	(mm)	(Coulombs)	$(k\Omega-cm)$
High	> 1.3	> 4,000	< 12
Moderate	0.8 - 1.3	2,000 - 4,000	12 - 21
Low	0.55 - 0.8	1,000 - 2,000	21 - 37
Very Low	0.35 - 0.55	100 - 1,000	37 - 254
Negligible	< 0.35	< 100	> 254

Table 7 Summary table of penetrability category, penetration depth, coulombs passed and surface resistivity (for 4-in. x 8-in. cylinders tested with Wenner probe spacing set to 1.5 in.)

5.3.3 BULK DIFFUSION TEST

The bulk diffusion test was conducted using the NT BUILD 443 (1995) test procedure. Samples were 4-in. (102-mm) diameter by 8-in. (204-mm) long, with three samples cast for each mixture. The samples were kept in a moist room with a sustained 100% humidity for 28 days, removed from the moist conditions, and sliced on a water-cooled diamond saw into two halves (Figure 12a). The cut specimens were immersed in a saturated Ca(OH)₂ solution in an environment with an average temperature of 73°F (23°C). The samples were weighed daily in a surface-dry condition until their mass did not change by more than 0.1 percent. The specimens were then sealed with Sikadur 32 Hi-Mod epoxy on all surfaces except the saw-cut face and left to cure for 24-hours. The sealed samples were then returned to the Ca(OH)₂ tanks to repeat the above saturation process by weight control. The samples were then immersed under surface-dry conditions in salt solution (16.5 percent of sodium chloride solution mixed with deionized water) in tanks with tight closing lids (Figure 21). The tanks were shaken once a week and the NaCl solution was changed every 5 weeks. The original procedure called for at least 35 days of exposure before the chloride penetration analysis was to be conducted. Moreover, it suggests to sample between 0.04-inch to 0.08-inch (1-mm to 2-mm) increments by powder grinding the profiles for this exposure time and type of high quality concrete. With the equipment available for the use on the project, an exposure of 35 days is insufficient to achieve a measurable chloride profile. Exposure period was fixed at 365 days and a sampling increment of 0.25-inch (6.5-mm) was used.

Figure 21 Bulk diffusion saline solution exposure

5.3.4 CORROSION OF EMBEDDED REINFORCING STEEL

ASTM G109 test method assesses the ability of the concrete to inhibit the corrosion of embedded steel reinforcement. Each specimen was fabricated using a mold containing three #4 deformed steel reinforcing bars and a titanium reference electrode as shown in Figure 22. At an age of 24 hours, each specimen was demolded and allowed to cure in a moist condition at a temperature of $73.4 \pm 3.0^{\circ}$ F, so that free water was maintained on the surface at all times until they were 28-days of age. At this time, each specimen was placed in an environmental chamber maintained at 50% relative humidity for a period of two weeks. Following this conditioning, a 6 in. long x 3-in. wide x 3-in. deep acrylic dam was adhered to the top of each specimen. The surface of the concrete was then sealed, with the exception of the bottom and the inside of the dammed area, using Sikadur 32 High Mod epoxy (Figure 23)

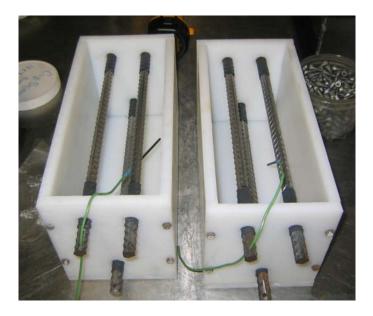


Figure 22 ASTM G109 specimen molds containing the reinforcing bars and reference electrode

Figure 23 ASTM G109 specimen after epoxy has been applied

Samples were then placed back into the environmental chamber for 56 days of age. After 56 days had passed an altered method of the testing procedure was followed. ASTM G 109 states that samples should be ponded with a 3% NaCl, and stored at $73 \pm 5.0^{\circ}$ F and a relative humidity of $50 \pm 5\%$. To accelerate corrosion, a 15% NaCl solution was used with the specimens exposed to $90 \pm 5^{\circ}$ F. The specimens were connected to automated monitoring system that measured current and potential once daily (Figure 24). Each specimen was subjected to a cycled regime of the 15% NaCl solution; the cycles were maintained at two weeks of sealed continuous ponding, followed by two weeks of drying. An electrical diagram of the test setup is presented in Figure 25.

Figure 24 Environmental room containing the automated monitoring device and corrosion specimens

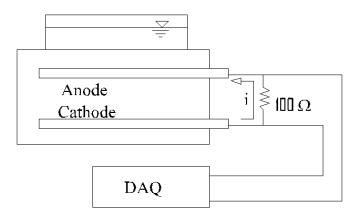


Figure 25 Electrical diagram of corrosion specimens

5.4 XRD

5.4.1 SAMPLE PREPARATION

Prior to testing samples from the mechanical and durability tests, a pilot study was performed on neat PC pastes shown in Table 8. Batches of 990 grams were prepared with distilled water, Rinker Columbian PC and the admixture(s) using a high speed mixer for approximately one minute and maintaining a w/c of 0.5. Custom-made Teflon molds were used to create 4-in. x 1.5-in. x 1-in. prisms for each mix.

Mixture	PC	FA	S	
1	100	0	0	
2	70	0	30	
3	50	0	50	
4	80	20	0	
5	50	20	30	
6	30	20	50	

Table 8 Feasibility study mix proportions (% wt)

Once the pilot study was complete, five ASTM Class V Type I PC and AASHTO Class V Type II PC mixtures were chosen from the concrete mixtures discussed previously as noted in Table 9. The mixes were chosen to represent both extremes for ratios of FA and S content, each maintaining a w/c of 0.35. Hardened cement pastes were created for each of the five mixes in small 2-in. x 1-in. disks and used for references for the paste in the concrete samples. The

concrete samples were either received as 4-in. x 8-in. cylinders or 4 in. x 4 in. cut samples from the bulk diffusion test.

The decision to use the concrete samples was done after the first 28 days of curing had past for the ASTM mixes. Therefore, the unused halves of the bulk diffusion samples were used for all 28 day samples.

Mixture	PC type	PC	FA	S
TB1A5	ASTM	80	20	0
TB1H5	AASHTO	80	20	0
TB3A5	ASTM	60	20	20
TB3H5	AASHTO	60	20	20
TB6A5	ASTM	40	20	40
TB6H5	AASHTO	40	20	40
TB7A5	ASTM	40	40	20
TB7H5	AASHTO	40	40	20
TB8A5	ASTM	30	10	60
TB8H5	AASHTO	30	10	60

Table 9 Concrete mixtures in which X-Ray Diffraction was performed (% wt)

5.4.2 CURING

After mixing and placing in molds the pilot study samples and reference samples were placed in a curing room at 23° C and 97% relative humidity for 24 hours. All samples were then de-molded and transferred to a container of saturated lime water to continue curing. One sample of each mix was left aside on the day of de-molding, labeled as 1 day sample and then fully submerged in ethanol to halt the hydration process. The samples remained in ethanol for a minimum of 24 hours to ensure complete saturation. The other samples were removed from the lime water at the appropriate hydration date (3, 7, 14, 28, 56, 91, 128, and 365 days), labeled accordingly and placed in ethanol. The concrete cylinders were de-molded after 24 hours and then kept in lime water tanks until the appropriate hydration date.

5.4.3 SAMPLE PREPARATION

Figure 26 shows the pattern used to cut the prisms from the feasibility study. Three cross-sectional cuts were made from each prism with an Allied Tech-Cut 4 low-speed saw. The cuts resulted in a 25.5 mm x 38 mm x 3.8 mm sample, the approximate size of a petrographic

slide to allow the samples to be examined unmounted. The samples were then manually ground flat with 320 grit and 600 grit sand paper at 250 rpm for 3 minutes each and then polished, using 6µm and 1µm oil-based diamond suspensions at 350 rpm for approximately 5 minutes.

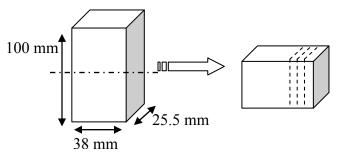


Figure 26 Cutting pattern for prisms

Figure 27 shows the progression of cuts needed for the hardened paste pucks and the concrete cylinders to render a sample size appropriate for XRD examination. The paste pucks were initially cut off-center to maximize the area for two 3.8-mm cuts. The concrete cylinders had an approximately ¹/₄ in. slice taken from the center, which was then cut into at least 9 sections – one for each hydration date.

Figure 28 shows a sample removed from a concrete cylinder. Figure 28a shows the irregular surface left by the trim saw. The wafer saw was then used to cut a thin section (Figure 28b and Figure 28c), which exposed the most cement paste. The slice was then polished for examination. As shown in Figure 28, the concrete sections were examined as each cut was made to ensure that the final sample surface exposed as much cement paste as possible.

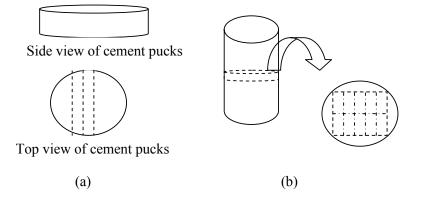


Figure 27 Cutting pattern for (a) cement paste pucks and (b) concrete cylinders

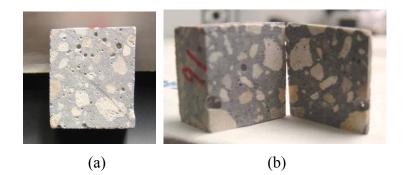
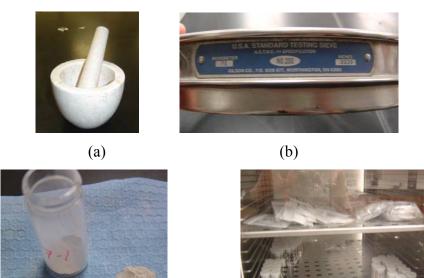



Figure 28 Sample from a concrete cylinder (a) after initial cut (b) after thin sectioning with wafer saw

Once the oil from the cutting saw had evaporated and/or the epoxy from mounting was dry, the sample was ready to be polished. Each sample was ground flat using a 320, 600, and 800 grit sand paper at 275 rpm for 3 minutes. The samples were then polished at 350 rpm using a 6, 1 and 0.25 micron oil-based diamond suspension for 5 minutes each. Grit, oil, or diamond dust left on the samples were removed using an ultrasonic cleaner for 3 minutes and then allowed to dry fully. If the final sample was too small, it was mounted to a glass petrographic slide with epoxy and then polished to a flat surface.

Since two slices were cut from each sample, one was analyzed as a hardened paste and the other was crushed into a powder. Mortar and pestle (Figure 29a) were used to crush the hardened cement paste samples. The powder was passed through a 200 mesh sieve to ensure uniformity in grain size (Figure 29b). The powders were placed in glass vials with a nylon cap (Figure 29c) and then stored in a dessicator until scanned (Figure 29d).

Figure 30 shows the final configuration for each type of cement or concrete sample. Figure 30a shows both cement paste sample that required mounting and a cement sample that was used without a slide. Figure 30b shows a concrete sample used in place of a slide to isolate and examine area of majority paste (avoiding the aggregate). Figure 30c shows a crushed sample pressed to a powdered layer on the slide.

(c)

(d)

Figure 29 Preparation of powder samples (a) mortar and pestle (b) No. 200 Sieve, (c) sample storage (d) dessicator.

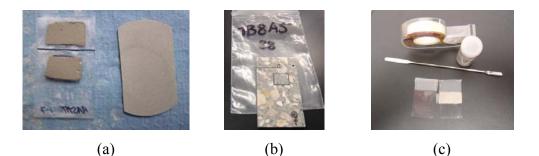


Figure 30 Final configuration for XRD examination (a) cement paste, (b) concrete, and (c) powder

To ensure the correct spacing of the smaller pieces of hardened cement and the approximation of the area to scan on the concrete sample shown above, reference was made to a standard template for the powder diffractometer used in this study (Figure 31). The area in which the slide was held by had to be the same height as the actual sample, otherwise sample height errors will distort the data. Therefore, the small cement pieces were epoxied to the slide prior to polishing.

The area scanned on the concrete samples was estimated by using a 10mm x 10mm measurement, trying to ensure the most paste as possible in the scan. The center of the outlined

area as well as the insertion line (the point at which the sample will be held) was marked. These marks help correctly line up the sample in the diffractometer to help ensure that the proper area was scanned. All marks were done with a carbon pen for later examination with the scanning electron microscope (SEM).

When the powders needed to be mounted, a glass slide was marked with a marker or carbon pen to match the template shown below. A piece of double-sided scotch tape was placed over the scan area. Some of the powdered cement paste was then poured over the top of the double-sided tape. Using a micro-spatula, the powder was firmly pressed to the tape and made level, which resulted in a slide such as the one shown above in Figure 30.

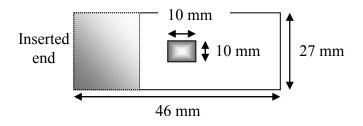


Figure 31 Dimensions and layout of sample examined by XRD

The powder diffraction instrument used in this study was the Phillips APD 3720 (Figure 32) provided by MAIC at the University of Florida. The specifics of the testing were as follows:

- X-ray Source: Cu kα radiation
- Operating Voltage: 40kV and 20mA
- Time per Step: 1 2.5 sec/step
- Step Size: 0.02 ° 2Θ
- Range: 17-35 °2Θ

Figure 32 Phillips APD 3720 powder XRD instrument at MAIC, University of Florida

6 RESULTS AND DISCUSSION

6.1 MECHANICAL TESTS

6.1.1 COMPRESSIVE STRENGTH

The compressive strength of each mixture was evaluated in accordance with ASTM C39. Though compressive strength is not commonly used as a means to investigate the durability of a concrete mixture, it is a helpful tool for determining the overall strength of a mixture and the level of stresses that can be applied during prestressing.

Figure 33 and Figure 34 shows the seven-day compressive strength for the class IV and V mixtures, respectively. The variation of supplementary cementitious materials (SCM) in each concrete mixture appears to have had little effect with the exception of 4F2S, which is markedly lower than the other mixtures. This mixture contains 40% FA, which tends to slow the early reaction rate of the concrete.

Interestingly, the mixture containing SF 7% and FA 20% did not outperform all of other mixes with regards to 7 day compressive strength. Mehta and Gjoerv (1982) showed that concretes made with SF and FA exhibit higher compressive strengths gains similar to PC only concretes until 28 days. Therefore, the average strength gain seen by all 2FA7SF mixtures is expected. The findings of this study shows a trend that at early development (< 7 days) SF seems to provide little advantage to S based ternary blends with regards to compressive strength, and thus, the addition of SF is not advantageous with regards to providing a high early strength for prestressed concrete production. Indeed, most all of the mixtures in both classes were near or exceeded 6,000 psi at seven days. It is important to note that seven day ages were the lowest age tested in this program.

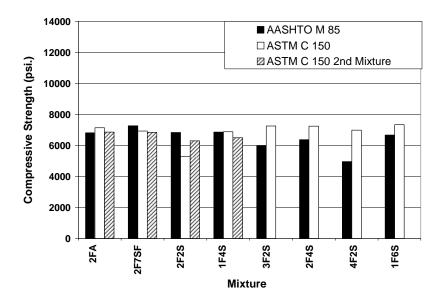


Figure 33 Compressive strength (7-day) class IV mixtures

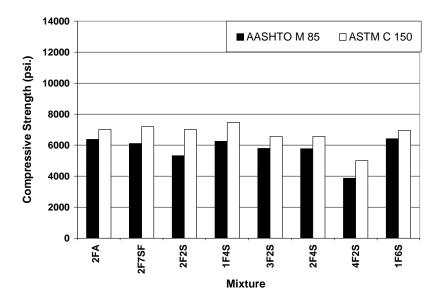


Figure 34 Compressive strength (7-day) for class V mixtures

As expected, Figure 33 and Figure 34 show that after 7 days of curing, ASTM PC frequently produce higher compressive strengths than AASHTO PC. The larger short-term strength gain seen in the ASTM PC is attributed to the smaller PC particles sizes found in the ASTM PC. The use of smaller particles allows the PC to react faster with water resulting in larger short-term strength gains.

Figure 36 and Figure 38 shows the results of the 28-day strength tests. One chart shows the actual 28-day strengths while the other chart gives the compressive strength normalized by the strength of the control mixture (2FA). As expected, S and SF provided higher compressive strengths than high quantities of FA. Mixtures containing more than 20% FA along with low percentages of S (20%) had lower strengths than that of the control. In all cases, however, the tested compressive strength exceeded that required by the FDOT Specifications for Class IV (5500 psi) and Class V (6500 psi).

S appears to have improved the 28-day compressive strength in ternary mixtures containing FA. Mixtures containing 40 or 60% S performed as well or better than the control and even the SF mixture. This agrees with ACI (233R-03), which found that when compared with a PC only concrete, the use of Grade 120 S typically increases concrete strength 7 days after curing. Li and Zhao (2003) also reported that ternary mixtures composed of 60%PC, 25%F and 15%S produce higher 28-day compressive strengths than PC only concretes and FA/PC binary mixtures. The use of higher quantities of S does not appear to proportionally increase strength as illustrated by the slight decrease in compressive strength as the percentage of S was increased from 40% to 60%.

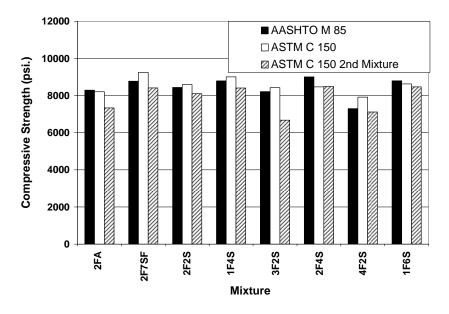


Figure 35 Compressive strength (28-day) for class IV mixtures

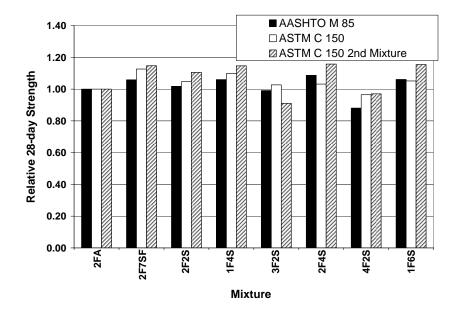


Figure 36 Relative compressive strength (28-day) for class IV mixtures

Figure 37 Compressive strength (28-day) for class V mixtures

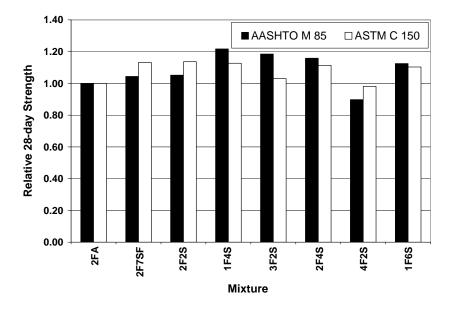


Figure 38 Relative compressive strength (28-day) for class V mixtures

After 28 days of curing, Figure 36 and Figure 38 show that ternary mixtures containing AASHTO PC have started to produce similar if not greater compressive strengths than concretes using ASTM PC. The relative increase between 7 and 28 days between the two PC types shows that the effect of the early delay in reaction of the larger PC particles has begun to fade. Consequently, due to the fact that neither ASTM nor AASHTO PC noticeably outperforms the

other provides evidence that at 28 days, the use of either ASTM or AASHTO is equally advantageous.

Figure 40 and Figure 42 show the compressive strength 365 days after casting. Before discussing the results it should be noted that the compressive strength for a few of the mixtures appeared to decrease from 28-day to 365-day tests. The suspect tests from the Class IV mixtures are 1F4S and 3F2S using ASTM PC. The suspect tests from the Class V mixtures are 3F2S 2F4S, and 1F6S using AASHTO PC. The cause of this apparent decrease is not known and is attributed to test procedure problems.

When accounting for the outliers, the compressive strength at 1-year of age is relatively consistent with the exception of 4F2S, which underperformed the majority of mixtures for each class designation. This is thought to be due to the excessive quantity of FA.

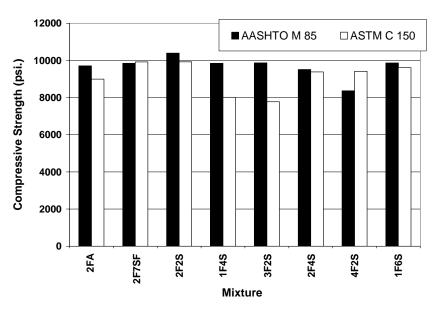


Figure 39 Compressive strength (365-day) for class IV mixtures

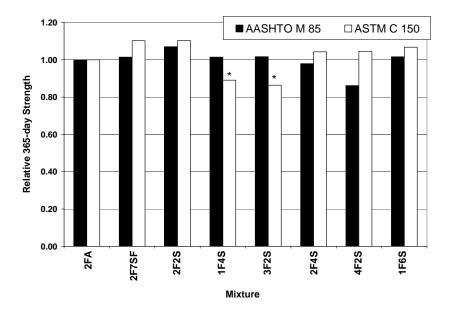


Figure 40 Relative compressive strength (365-day) for class IV mixtures (* low values likely due to test procedures)

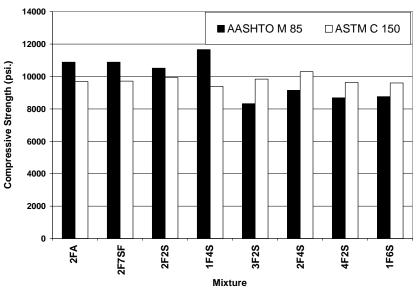


Figure 41 Compressive strength (365-day) for class V mixtures

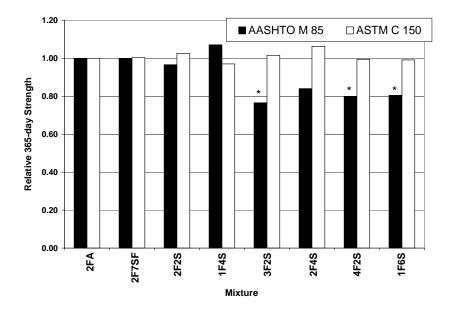


Figure 42 Relative compressive strength (365-day) for class V mixtures (* low values likely due to test procedures)

In general, at 1-year the ternary mixtures containing AASHTO PC have a slightly greater compressive strength than that of the ASTM PC. Although this difference is thought to be relatively insignificant, one explanation is that AASHTO does not permit additional minerals to be added to the PC, while ASTM PC allows a 5% replacement of PC with limestone. This difference might explain the slight difference in performance.

6.1.2 MODULUS OF ELASTICITY

Figure 43 shows that the early MOE for class IV mixtures containing ASTM PC is dependant on the proportions of SCM added to the concrete mixture. Generally, binary and ternary mixtures containing high quantities of slow reacting FA provide the lowest MOE values until 365 days of curing. After curing of 365 days, the various SCM components appear to have fully reacted and produce MOE values similar to the mixtures containing S and SF. This result reflects the late strength gains noted in the compressive strength results. High quantities of S combined with FA appear to produce faster gains in MOE on ASTM class IV concrete mixtures.

Figure 44 shows that for the class V mixtures containing ASTM PC the addition of varying SCM proportions and materials has little notable effect. The majority of MOE values recorded for ASTM class V concrete report similar values at all testing dates and shows similar gains in MOE with time. The relatively unchanging MOE performance with regards to the

different SCM proportions can be traced back to compressive strength performance. As recently shown, class V ASTM concretes show little variance among the different mixtures for all testing dates. Due to this occurrence, the similar MOE values appear acceptable. However, the SCM mixtures composed of 2F, and 3F2S, show significantly higher MOE values than the other mixtures at 7 and 14 day testing. These results are suspect, because both mixtures were formulated with high quantities of FA, and past research has shown that the slow reactive nature of FA will contribute to lower MOE values at early testing ages (Lane and Best 1982). Furthermore, there is no evidence in the compressive strength data to support the high MOE values shown by mixtures 2F and 3S2F at 7 and 14 days.

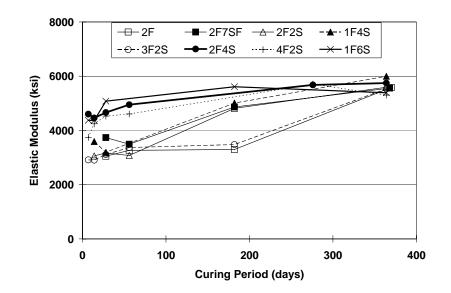


Figure 43 Modulus of elasticity for class IV mixtures with ASTM PC

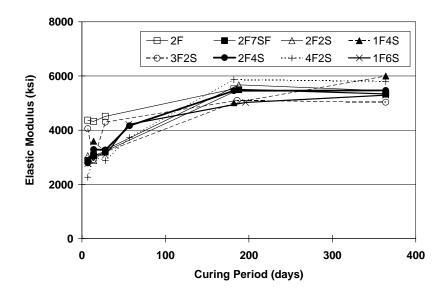


Figure 44 Modulus of elasticity for class V mixtures with ASTM PC

Similar to the pattern noticed for the mixtures with ASTM PC, Figure 45 shows that the SCM proportions used for each mixture generally do not produce any significant changes in MOE performance at later testing ages. At 14 days, however, the figure shows that mixtures containing high quantities of S (> 40%) produce higher MOE values than the other SCM mixtures. The higher MOE values reported for 1F4S and 1F6S was unexpected because the compressive strength for both mixtures does not greatly outperform the other mixtures. The class IV mixtures with AASHTO PC show that the addition of SF produces higher MOE values than the majority of the SCM mixtures. The high MOE values reported for 2F2SF at 56 days, however, appear reasonable based on highly reactive nature of SF.

Unlike the previous ASTM and AASHTO mixtures Figure 46 shows that AASHTO class V concrete produces relatively unchanging MOE values from 28 days to 365 days. However, the results previously presented for 7 and 28 day compressive strengths are similar to the results seen in Figure 46. Due to this fact, and the similarities noticed between compressive strength and MOE in the previous plots, the uniform results present in Figure 46 appear reasonable.

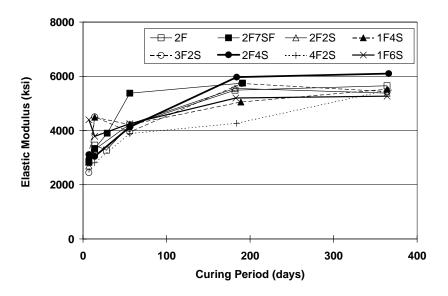


Figure 45 Modulus of elasticity for class IV mixtures with AASHTO PC

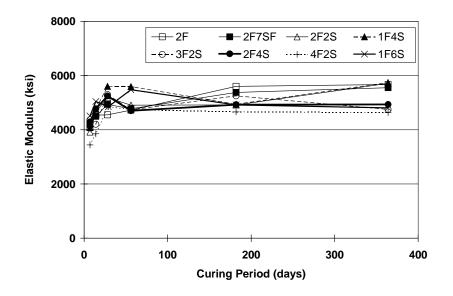


Figure 46 Modulus of elasticity for class V mixtures with AASHTO PC

Figure 47 and Figure 48 compare the 1-year MOE results. The similar performance noted between the PC types is due to the fact that the larger PC particles found in AASHTO PC have fully reacted at this curing period. Furthermore, the data presented in Figure 47 and Figure 48 show that 63% of the SCM mixtures containing AASHTO PC outperform the ASTM cements. This same proportion was valid for the compressive strength data as well.

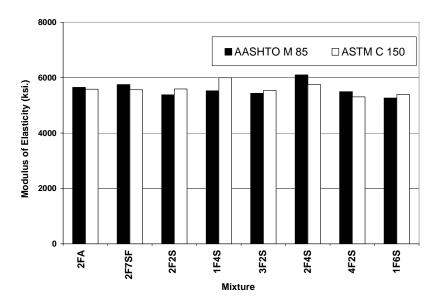


Figure 47 Modulus of elasticity (365-day) for class IV mixtures

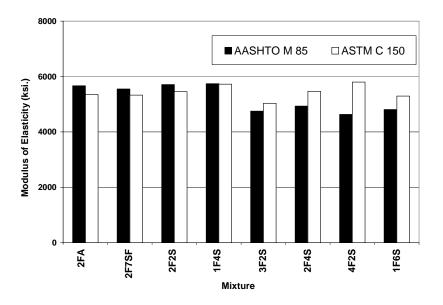


Figure 48 Modulus of elasticity (365-day) for class V mixtures

6.1.3 SPLIT TENSILE STRENGTH

The results for the split cylinder test are presented in Figure 49 though Figure 52. The data for the split tensile strength have high variability for all testing ages. During testing, it was noted that all test specimens were found to fail by the splitting of the aggregate. Consequently, the variation in data is largely attributed to the variability of the coarse aggregate. Another cause of variance in the ultimate split tensile strength was caused by the shape of each specimen. It

was found through caliper measurements that many specimens were not cylindrical through their entire length. Due to deformations in cylinder molds, the finished surface was oval shaped in many cylinders. This would allow a non-uniform load to be applied during the test, thus affecting the apparent tensile strength of the specimen.

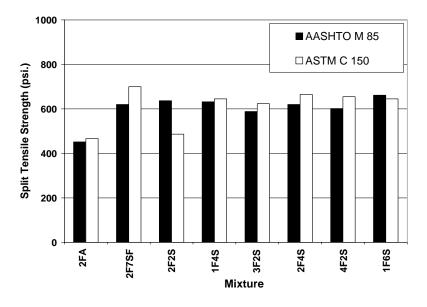


Figure 49 Split tensile strength (28-day) for class IV mixtures

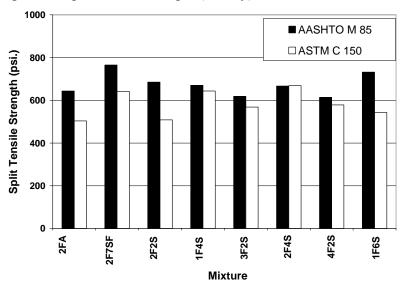


Figure 50 Split tensile strength (28-day) for class V mixtures

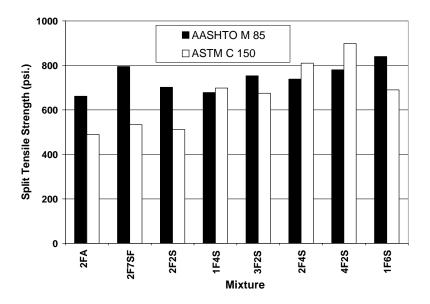


Figure 51 Split tensile strength (365-day) for class IV mixtures

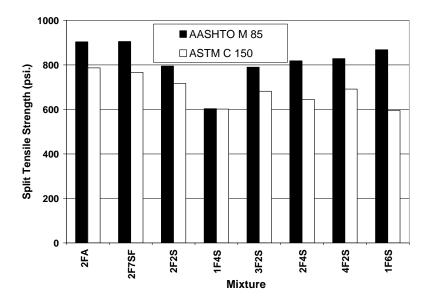


Figure 52 Split tensile strength (365-day) for class V mixtures

6.1.4 FLEXURAL STRENGTH

Figure 53 and Figure 54 show the 28-day Modulus of Rupture (MOR) results for class IV and V concrete. Note that some data are not available. The results appear to be relatively consistent among the various mixtures, but vary with PC type. In particular, the class V AASHTO PC mixtures have a consistently higher MOR than that of the ASTM mixtures. It is not clear why there is a significant effect for MOR but not for compressive strength. This is likely due to the smaller PC particle size resulting in higher early strengths for the AASHTO PC relative to that of the ASTM PC. Tensile strength appears to benefit from this phenomenon as well as compressive strength.

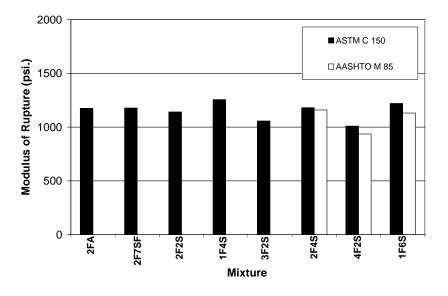


Figure 53 Modulus of rupture (28-day) for class IV mixtures

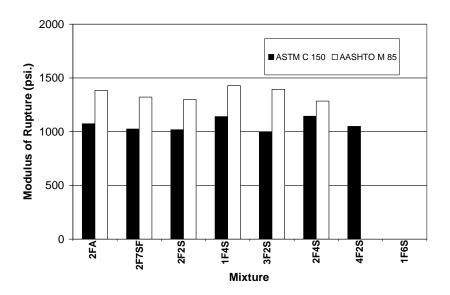


Figure 54 Modulus of rupture (28-day) for class IV mixtures

The majority of MOR strengths for each specimen exhibit a modest increase as the test age was increased from 28 days to 365 days (Figure 51 and Figure 52). These results confirm

those found by others. Neville 1995, for instance, suggests that the addition of SCMs into concrete mixtures does not directly influence the flexural tensile capacity beyond any typical gains normally experienced by altering the compressive capacity. Khatri provides evidence that for ternary blends containing different proportions of FA and SF, the MOR is not affected beyond the typical proportionality between MOR and compressive strength.

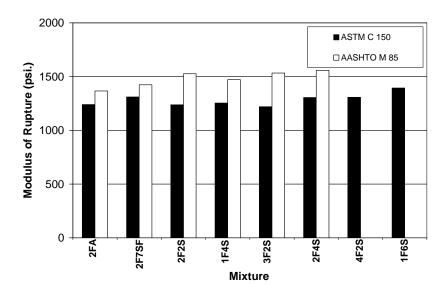


Figure 55 Modulus of rupture (365-day) for class IV mixtures

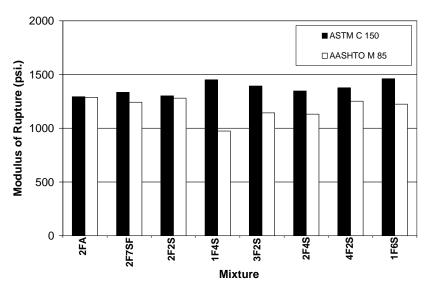


Figure 56 Modulus of rupture (365-day) for class V mixtures

6.1.5 CREEP COEFFICIENT

Figure 57 and Figure 58 present the creep coefficients calculated from the data gathered during the creep testing. Unfortunately, the combination of low sustained creep stresses and the use of dial gauges, resulted in data that produce creep coefficients that do not appear valid. Both of these figures show multiple specimens with creep coefficients significantly lower that 1.0. Furthermore, a number of specimens were calculated to have negative creep coefficients.

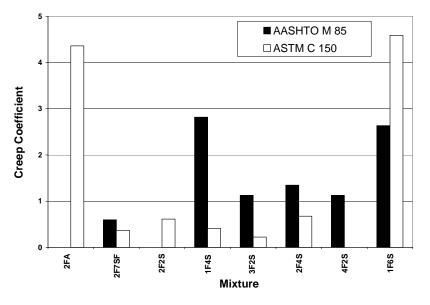


Figure 57 Creep coefficient for class IV mixtures

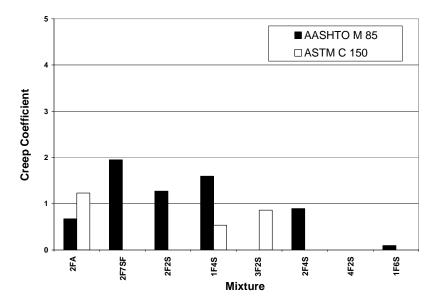


Figure 58 Creep coefficient for class V mixtures

6.2 DURABILITY TESTS

6.2.1 BULK DIFFUSION TEST

Selected bulk diffusion specimens were tested for chloride penetration after a 365-day exposure period. After their exposure period, each of the samples were profiled and tested using the FDOT standard test method FM5-516 to obtain their acid-soluble chloride ion content. The profiling was done by cutting 0.25-in. slices up to 1.5 in. depth for the ASTM C150 cement specimens and 2.0 in. for the AASHTO M85 cement specimens. Sample slices were saw-cut from the bulk diffusion cylinder specimens pulverized and divided into three separate samples for testing. The results are giving in Appendix G. Background chloride content was determined using uncontaminated samples. These values are also given in Appendix G.

The diffusion coefficients were determined by fitting the data obtained in the chloride profile analysis to Fick's Diffusion Second Law equation. The measured chloride contents at varying depths are fitted to Fick's diffusion equation by means of a non-linear regression analysis in accordance with the method of least squares fit. The equation used to fit the data was:

$$C(x,t) = C_s - (C_s - C_i)erf\left(\frac{x}{\sqrt{4Dt}}\right)$$

where:

C(x,t) - chloride concentration, measured at depth x and exposure time t (% mass)

 C_s - projected chloride concentration at the interface between the exposure liquid and test specimen that is determined by the regression analysis (% mass)

C_i - initial chloride-ion concentration of the cementitious mixture prior to the submersion in the exposure solution (% mass)

x - depth below the exposed surface (to the middle of a layer) (m)

D - chloride diffusion coefficient (m^2/sec)

t - exposure time (sec)

erf - error function (tables with values of the error function are given in standard mathematical reference books).

Equation 2

In some cases, the outermost data point may be ignored because the chloride transport mechanisms near the surface include absorption, capillary action, and wetting/drying. The bulk diffusion test, however, provides a saturated environment where nearly pure diffusion can occur. Consequently, all chloride values were considered when conducting the curve fit.

Profile data and curve fitting results for each concrete mixture are included in Appendix G. The background levels for samples TB4A4 through TB8A4 and TB5H5 through TB8H5 were higher than the chloride contents measured on interior slices of the respective exposed samples, indicating that the background samples were likely contaminated during processing. Consequently, the background values used to fit the equation were the lowest value measured in the interior slices of the exposed samples.

The one year diffusion coefficients are summarized in Figure 59 and Figure 60. The values range from around $3E-12 \text{ m}^2/\text{sec}$ to less than $1.5E-12 \text{ m}^2/\text{sec}$. Vivas et al. (2007) conducted similar bulk diffusion tests using one year of exposure. They found that for a mixture with 8% SF the average one year diffusion coefficient was $2.06E-12 \text{ m}^2/\text{sec}$, for a mixture with 10% metakaolin it was $1.26E-12 \text{ m}^2/\text{sec}$, and for a mixture with 50% S it was $2.68E-12 \text{ m}^2/\text{sec}$ for Florida concretes. These values are in reasonable agreement with the data shown in the chart.

The ASTM PC mixtures have higher diffusion coefficients with an average of 2.27 and 2.21E-12 m²/sec for Class IV and Class V concrete mixtures while the AASHTO PC mixtures have an average of 2.02 and 1.53E-12 m²/sec for Class IV and Class V concrete mixtures. The lower diffusion coefficients for the AASHTO PC may be the result of the continued hydration of the larger PC particles.

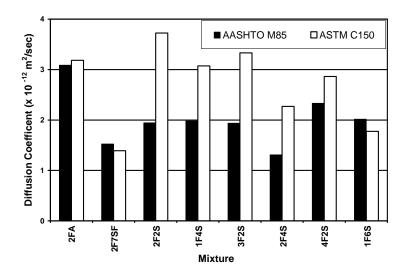


Figure 59 Bulk diffusion (365 day) for class IV mixtures

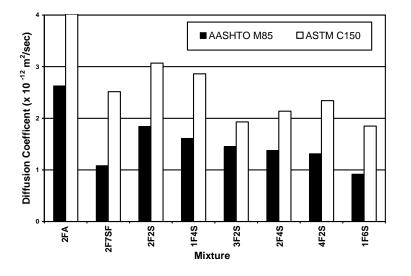


Figure 60 Bulk diffusion (365 day) for class V mixtures

6.2.2 RAPID MIGRATION TEST

Data collected from the rapid migration test (RMT) procedure was used to calculate the diffusion coefficient (D_{RMT}) based on the following equations:

$$D_{RMT} = \frac{R \cdot T \cdot L}{zF(U-2)} \cdot \frac{x_d - \alpha \sqrt{x_d}}{t}$$
 Equation 3

$$\alpha = 2\sqrt{\frac{R \cdot T \cdot L}{zF(U-2)}} \cdot \operatorname{erf}^{-1}\left(1 - \frac{2C_{d}}{C_{o}}\right)$$
Equation 4

where:

 D_{RMT} - non-steady-state chloride migration coefficient, m²/sec

z - absolute value of ion valence, for chlorides z = 1

F - Faraday constant, $F = 9.648 \times 104 \text{ J/(V*mol)}$

U - absolute value of the applied voltage, V

R - universal gas constant, R = 8.314 J/(K*mol)

T - average value of the initial and final temperature in the anolyte solution, K

L - thickness of the specimen, m

 x_d - average value of the penetration depths, m

t - test duration, sec

erf - error function

 C_d - chloride concentration at which the color changes, $C_d = 0.07$ N for PC concrete

 C_o - chloride concentration in the catholyte solution, $C_o = 2 N$.

Figure 61 and Figure 62 show the 56-day RMT results and Figure 63 and Figure 64 show the 91-day RMT results. Generally, the diffusion coefficients are lower for the class V mixture likely due to the lower w/cm ratio. With the exception of the 2FA mixture, the diffusion coefficients are less than $6E-12 \text{ m}^2$ /sec. This agrees with results from Vivas et al. (2007). They found that RMT diffusion coefficient for a mixture with 20% FA and w/cm = 0.35 was 6.1E-12 m²/sec. Although this is lower than that determined in this testing, it is in the general range of values obtained. For mixtures containing 20%FA and 8%SF their values were from 1.3 to 5.2 E-12 m²/sec, which generally agrees with the results from this testing. Finally, they found that a mixture with 50% S had a 56 day RMT of 4.6E-12 m²/sec, which agrees well with the results from this testing. To provide a reference point for these mixtures with SCM, Vivas et al. found that a mixture containing no SCM and a w/cm = 0.45 had a 91-day RMT diffusion coefficient of 20E-12 m²/sec. This indicates that perhaps the variation in diffusion coefficients among the ternary mixtures should not be compared with too fine a point. All of the mixtures displayed low diffusion coefficients. It is interesting to note, however, that the diffusion coefficient for S mixtures decreased with the increase in S proportions. Furthermore, when the S replacement

proportion was between 40-60%, then the diffusion coefficient approached that of the SF mixture.

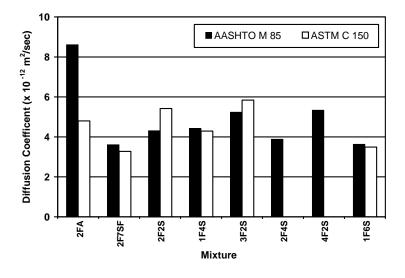


Figure 61 RMT (56-day) for class IV mixtures

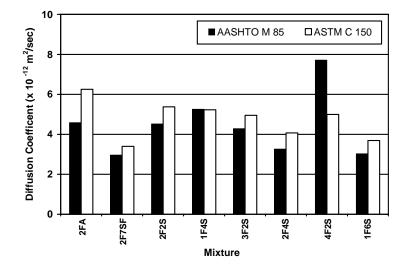
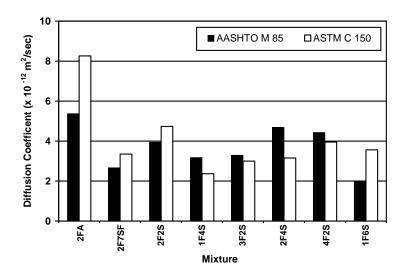



Figure 62 RMT (56-day) for class V mixtures

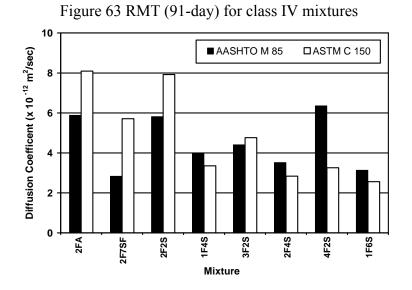


Figure 64 RMT (91-day) for class V mixtures

6.2.3 SURFACE RESISTIVITY TEST

Surface resistivity readings were taken at varying ages to determine the relative reduction in concrete permeability over time based on its conductivity. Results for concrete made with ASTM PC are shown in Figure 65 and Figure 66. The results are divided into two plots that contain the results for the Class IV and Class V concretes, respectively. Results for the concrete made with the AASHTO PC are shown in Figure 67 and Figure 68 and are likewise divided into two plots. In general, the increasing trend in resistivity is exhibited by nearly all of the mixtures as the age increases. Figure 65 through Figure 68 show that the ternary blend admixtures and proportions used during mixing appear to have a direct effect on the SR readings. However, with regards to the concrete type there appears to be little change between ASTM class IV, ASTM class V, and AASHTO class IV concretes. At early curing ages, AASHTO Class V ternary mixtures produce similar values to the other ternary mixtures. Figure 68, however, shows that AASHTO class V ternary mixtures produce a decrease in SR between ages of 91 and 182 days. These data are likely the result of erroneous readings since the next age shows the SR back to the original trend. Furthermore, Figure 68 shows that at 91 day testing, AASHTO class V mixtures have very similar values to the other mixtures used for this investigation. Due to all of durability results collected during this investigation the data suggest that the decrease in surface resistivity readings was caused by a malfunctioning testing apparatus and/or poor casting technique directly after mixing.

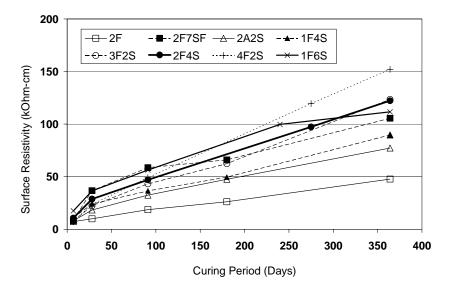


Figure 65 SR for class IV mixtures with ASTM PC

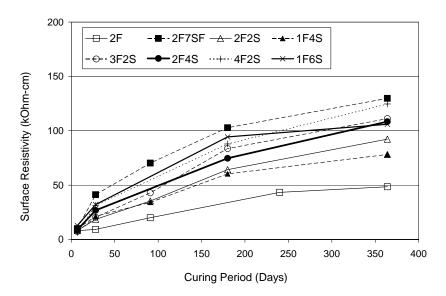


Figure 66 SR for class V mixtures with ASTM PC

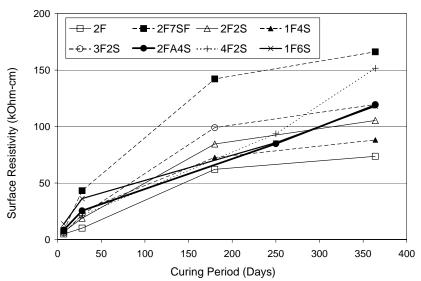


Figure 67 SR for class IV mixtures with AASHTO PC

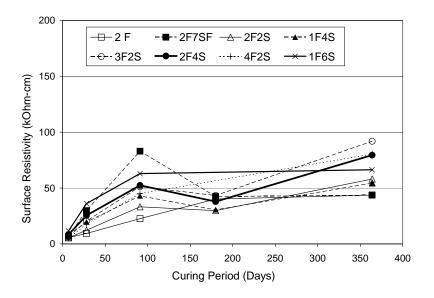


Figure 68 SR for class V mixtures with AASHTO PC

Figure 65 through Figure 68 show increases in surface resistivity for each concrete class and mixture with time. At early curing ages < 7 days all of the figures show little variance in the SR values for all of the mixtures. The lack of SR variance caused by the addition of ternary admixtures shows signs that at early curing ages the ternary blend admixtures have not begun to react. The lack of activity seen during these tests appears reasonable as a similar lack of reactivity was seen during compressive strength testing conducted at the early curing periods. While the low SR values seen at 7 day testing can be attributed to low reactivity, when compared to the values shown in Table 7, no mixtures produced SR values that performed better than High for the penetrability category created by Chini et al. (2003).

After a curing period of 28 days, however, ternary mixtures containing 20%FA+7%SF typically outperform the other mixtures. These results appear reasonable as the early reactive properties of SF are known to produce a dense, less permeable concrete (ACI 234R-06). After curing for 91 days the highly reactive SF has slowed leaving the slower reacting FA to produce denser, less permeable concrete. This explains why the rate of SR growth decreased to rates similar to the other ternary mixtures. The S mixtures, however, are unable to make up the large increase in SR values seen during the first 91 days.

Figure 69 and Figure 70 show that the addition of S to ternary blends produces higher short term SR values than mixtures containing solely FA. Additionally, the volume of S used as

admixture has an effect on the 28 day surface resistivity of concrete. Ternary mixtures containing 60%S outperform mixtures containing 40%S and 20%S with comparable levels of FA. Moreover, mixtures containing 40%S consistently produce higher 28 day SR values than mixtures containing 20%S with similar quantities of FA. While the addition of large quantities of S to ternary mixtures causes SR values to increase for the first 28 days of curing, the ultimate SR values is not proportional to the quantity of S added during mixing.

Regardless of the concrete specification or class used for mixing, the test results show that the addition of S improves the surface resistivity within ternary blend concretes, especially at early ages. As the curing time increases (> 181 days), the increase in surface resistivity found in the ternary mixtures is similar to binary mixtures containing only 20%FA. This occurrence is once again supported by the slow reactive nature of FA. Analysis of the SR vs. curing period plots shown in Figure 65 - Figure 68 show that short term strength gain is comparable to other S containing ternary mixtures. However, after curing for a period of 182 days there is a large increase in surface resistivity for the 40%FA-20%S ternary mixture, relative to the other ternary mixtures. It is believed that the large percentages of FA added for these mixtures are reacting at late curing ages, producing denser and less permeable concretes. This occurrence is supported by the fact that the ternary mixtures containing 30%FA-20%S produce similar gains to 40%FA-20%S concretes in SR readings at late curing ages.

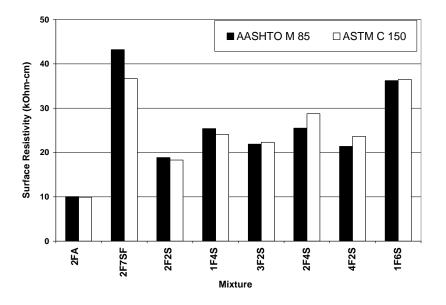


Figure 69 SR (28-day) for class IV mixtures

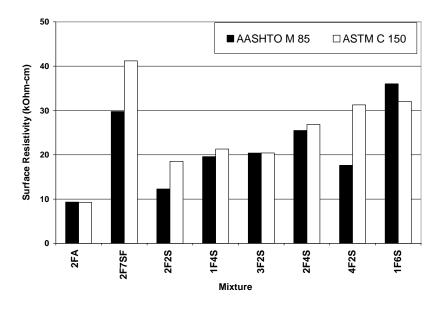


Figure 70 SR (28-day) for class V mixtures

6.2.4 CORROSION OF EMBEDDED REINFORCING STEEL

Based on the bulk diffusion test results, chloride penetration into the mixtures has been relatively small. This will be even more pronounced in the ASTM G109 test where salt water is ponded periodically on one surface of the specimen rather than continuously. Consequently, corrosion current and potential data indicate that there is very little activity in any of the specimens.

6.3 XRD

JCPDS file 44-1481 reports a d-spacing of 2.62700 Å (approximately $34^{\circ} 2\Theta$) as the dominant diffraction peak Portlandite, or CH; this peak was used as reference peak for comparison between mixes. All the data for peak intensity was re-calculated for the equivalent scan time of 1 sec/step.

6.3.1 FEASIBILITY STUDY

The following pilot study results were able to show sufficient differences in the CH peaks to support the continued analysis of the ternary blends.

Figure 71 displays a summary of the prominent CH peaks through 91 days of hydration for the six pilot mixes. Mix 1 (control) consistently produced the largest volume of CH as

reflected in the relatively high peak intensities measured with the maximum occurring at 14 days. This was because Mix 1 had the largest relative volume of PC, the primary source of CH. The other mixes contained lower volumes of CH at nearly all ages. Mixes 2 and 4 showed the same general trend as Mix 1. Mix 2 initially produced CH at a similar rate as the control mix between 1 and 7 days, although with lower total volume. After 7 days, however, an apparent decrease in production occurs, which is likely due to the CH consumption caused by the pozzolanic reaction of the S combined with the lower volume of CH available for reaction. Mix 4 (80% Portland) does not show the same initial production rate as Mix 2, but does appear to have the same volume and trend as that of Mix 2. This may be indicative of the lack relative difference in reaction kinetics of the FA compared to S, which allows early production of the CH in Mix 2, but not Mix 4. For mixes 3, 5, and 6, the low volume of PC may result in low volumes of CH with some slight variations caused by the SCM. For example, Mix 6 has the highest SCM replacement of any of the mixes, which may account for the low overall net production of CH throughout the 91 days.

The high replacement ratio in ternary blends may result in an inadequate volume of PC hydration products to allow reaction of the entire volume of SCM. The late drop in intensity around 56 days could be the FA reacting with the remaining CH. Lacking hydration products for reaction, the excess FA will remain unreacted within the matrix, which in large volume may cause mechanical or durability problems within the microstructure.

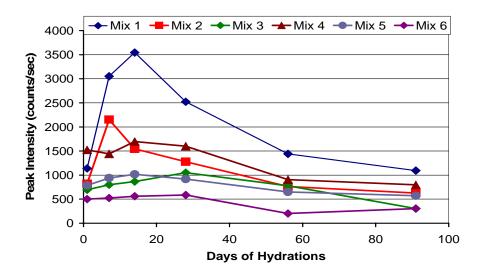


Figure 71 Comparison of peak intensities at d-value = 2.62700 Å for the pilot study mixes through 91 days.

Figure 72 through Figure 74 show SEM imaging of Mixes 1, 3, 5, and 6 at ages of 1 day, 28 days and 56 days, respectively. The images of each mix are placed in the same arrangement in each figure to allow visualization of the hydration process. Mix 1, which contains no SCM, shows the typical hydration stages of PC. The PC grains are apparent at the early ages with very little to no cementation present. At 56 days the matrix has become less grainy yet porous. In contrast, the hydration of Mix 3 (50% S) starts with a more coarse microstructure than that of the pure PC mix, which includes large S grains that are visible at 1 day. These grains diminish as they hydrate and appear to be nearly entirely consumed by an age of 56 days. By 56 days the mix 3 appears to have a less porous microstructure than that of mix 1.

Figure 71 shows that mix 3 and 5 appear to have similar CH production and consumption rates. In contrast, the SEM images for mix 5 (50% PC, 20% FA, and 30% S) differ from that of mix 3 (50% PC and 50% S). At day one, unhydrated S particles occupy a large volume of the mix 3 paste relative to that of mix 5. FA can also be seen in mix 5 and overall the structure appears to be less porous due to the particle packing provided by the smaller FA particles. At 28-days (Figure 73) most of the S particles in mix 3 and 5 have hydrated, while partially hydrated FA particles are still present in mix 5, confirming that S is more reactive than FA. Furthermore, S hydration will likely use the available CH products, possibly delaying or even stalling the FA reaction.

The primary difference between mix 5 and mix 6 at 56 days is that all the S has reacted in mix 5 and the presence in mix 6 is evident in Figure 74d. Even after 56 days of hydration both show the presence of unhydrated FA left in the matrix. After 56 days, FA particles are still seen (sparsely) throughout the matrix in both mixes. The unhydrated particles could be due to the lack of CH caused by lower PC volumes and use of CH to react with S. Reduced CH availability is also evident when comparing the 56 day images of Mix 3 (50% PC and 50% S) and Mix 6 (30% PC, 20% FA, and 50% S). FA particles are visible in the matrix.

In summary, this limited scope XRD analysis and SEM imaging have shown that as SCM volumes are increased, the net volume of CH available for pozzolanic reaction decreases, resulting in unreacted SCM. This work has also indicated that the early reaction of S may consume available CH, which then may starve the FA reaction at later ages.

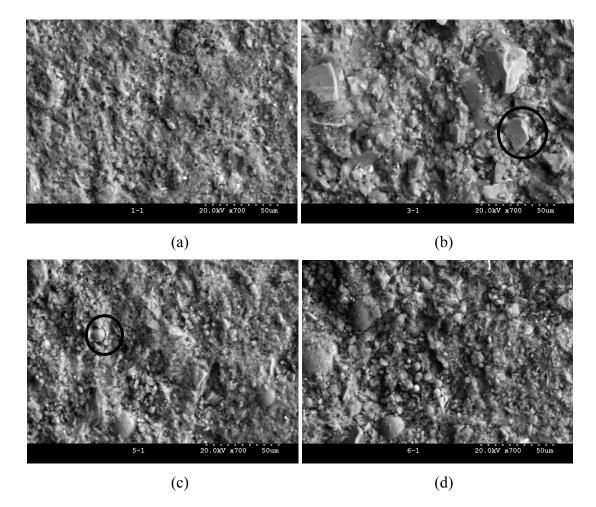
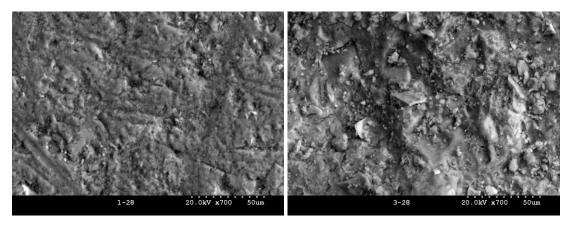



Figure 72 SEM micrographs at 1 day (a) mix 1 (100% PC), (b) mix 3 (50/50 PC/S), (c) mix 5 (50/20/30 PC/FA/S) (d) mix 6 (30/20/50 PC/FA/S).

(a)

(b)

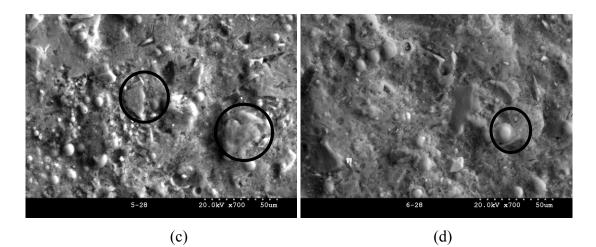


Figure 73 SEM micrographs at 28 days (a) mix 1 (100% PC), (b) mix 3 (50/50 PC/S), (c) mix 5 (50/20/30 PC/FA/S) (d) mix 6 (30/20/50 PC/FA/S).

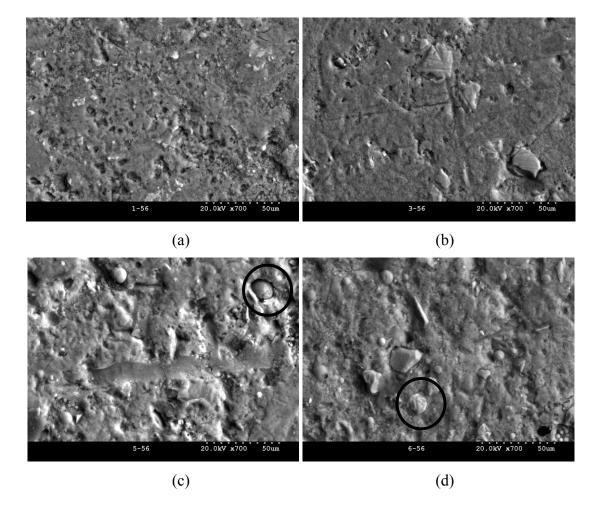


Figure 74 SEM micrographs at 56 days (a) mix 1 (100% PC), (b) mix 3 (50/50 PC/S), (c) mix 5 (50/20/30 PC/FA/S) (d) mix 6 (30/20/50 PC/FA/S).

6.3.2 CEMENT PASTES

Examining the XRD spectrums (Appendix B) supports the findings of the feasibility study the volume of PC has a direct effect on the production of CH and its reaction with SCM.

According to the JCPD of CH, the two of peaks at 18° and $28^{\circ} 2\Theta$ are CH peaks that are the 2^{nd} and 3^{rd} most prominent respectively for this mineral. Throughout the hydration it appears that the 28° peak does not change or have much relevance on the rate of hydration. The fluctuation of the 18° and the 34° peaks could indicate the production and dissolution of the CH in the corresponding crystal states. Based on the mineralogy of the structure at these 2 peaks, it is predicted that the 18° structure is more stable and forms a smaller crystal than the one at 34° . Assuming this can be shown, the benefit of optimizing the peak ratios between these two crystals will affect properties such as density of paste and the presence of an interstitial zone, which in turn will affect the durability of the concrete. This effect has been shown using nano-silicates in PC because of the greater surface area of the particles (Ji 2005, Jo, *et al.* 2007). It is possible that a similar effect occurs with the increased presence of the smaller CH crystal formation.

6.3.3 HARDENED PASTE VS. CONCRETE

Limited scans were done using powder diffraction on hardened concrete samples. The surface of the sample was evaluated and marked to try and encompass as much paste area as possible during the scan, as shown in Figure 75. The resulting scans clearly showed the quartz peaks indicating the aggregate and fines. Due to the intensity of the quartz peaks, the CH peaks were hard to separate. Figure 75 shows a comparison for ASTM TB6A5 between the hardened paste and the comparable concrete sample. Each was scanned under the same conditions. Improved scans might be obtained by using a longer scan rate and more isolated peak range, i.e. $32^{\circ}-36^{\circ}$ 2-theta. Even though the peak intensities of the quartz if very high, the CH peak appears to be comparable to the paste samples. Based on this trend it appears as though the hardened paste scans can be a comparable estimate to the paste within a concrete system.

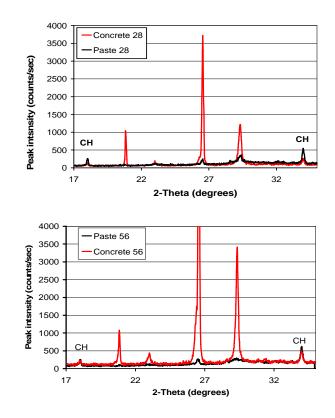
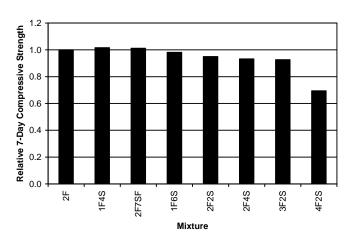
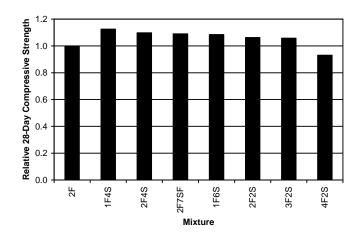


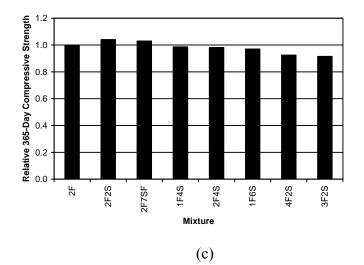
Figure 75 XRD spectrums comparing ASTM TB6A5 hardened paste to the same concrete mix at 28 and 56 days.

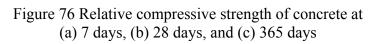
6.3.4 HARDENED PASTE VS POWDER


The general trend at each of the major peaks for CH was consistent throughout all the mixes. Both the 28° and 34° peak was lower in intensity for the powder than the hardened paste. The 18° peak for the powder was always higher than the hardened paste. The difference in these peaks may be attributed to the idea that CH crystallizes with a preferred orientation. When analyzing the powder samples, the orientation is negated and the results indicate quantitative comparison rather than a qualitative one for the hardened paste. More investigation would have to be done for confidence of the preferred orientation issue. It appears that as long as the samples compared are in the same form, hardened paste or power, a good qualitative analysis can be made.


7 SCM PROPORTIONING FOR STRENGTH AND DURABILITY

Because the mechanical properties and durability of concrete are both important factors for structures placed in aggressive environments, these parameters are further analyzed in the following sections.


7.1 COMPRESSIVE STRENGTH COMPARISON


Figure 76 shows a summary of the 7, 28, and 365 day compressive strength normalized to the control mixture 2F. The final value for each mixture and age is an average of the results from both PC types and both concrete classes. Each chart shows the ternary results ranked from highest to lowest (left to right). Early strength development in concrete mixtures is important to consider due to the high compressive stresses generated during prestressing. Because a large number of the structures exposed to extremely corrosive environments are prestressed bridge piles, sufficient early strength is necessary to allow timely prestress transfer. This allows the piles to be produced more quickly resulting in economic savings. Figure 76 indicates that the variation in early strength among the ternary mixtures was no more than 10% with the exception of 4F2S. The results correlate well with the FA content. As the FA content increases, the early strength development is inhibited. This is particularly true for 4F2S, which contains 40% FA. This reflects the longer hydration period typically required by FA over that of other more reactive SCM. In addition, S appears to delay the early strength in mixtures with comparable quantities of FA (2F, 2F2S, 2F4S). As S content increases the seven-day compressive strength decreases. At 28-days and 365-days, however, the compressive strength results vary by no more than about 10% from the control values, indicating a stabilization of the reaction of the PC and SCM.

7.2 CHLORIDE RESISTANCE COMPARISON

The relative durability performance of the ternary mixtures is compared to the control mixture in Figure 77 through Figure 80. Each figure contains three plots which show the relative performance of the mixtures as measured by bulk diffusion (BD) at 365-days, rapid chloride migration (RMT), and surface resistivity (SR). Each plot shows the results of the tests normalized to those of the control mixture (2FA), which is a binary mixture incorporating 20% FA by PC replacement weight. The data are normalized such that when the result is greater than one, the mixture performed better than the control and when the value is less that one, the mixture performed worse than the control. For example, the ASTM Class IV 2F7SF mixture had a bulk diffusion value that was less than half that of the control.

The BD, RMT, and SR all appear to exhibit similar trends with respect to the control for both classes of concrete and both cements

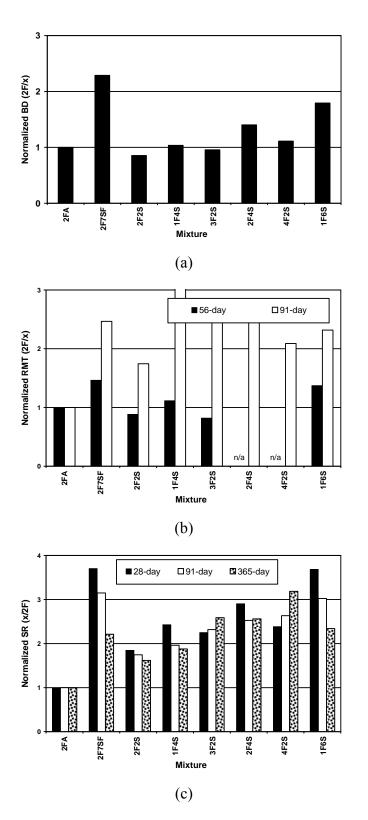
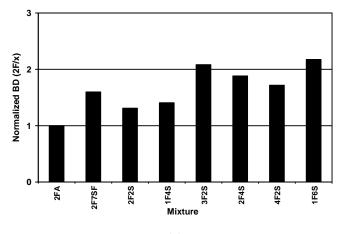
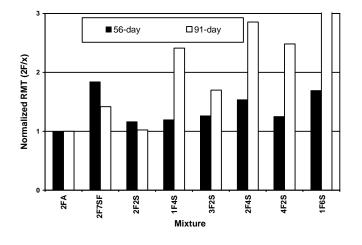




Figure 77 Durability comparison for class IV with ASTM PC

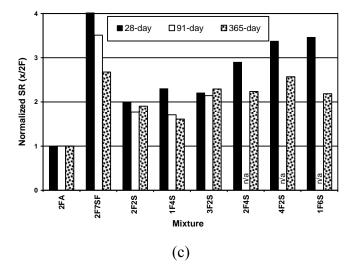
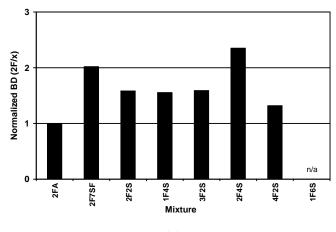
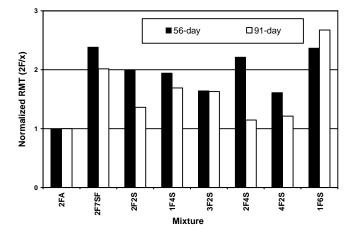




Figure 78 Durability comparison for class V with ASTM PC

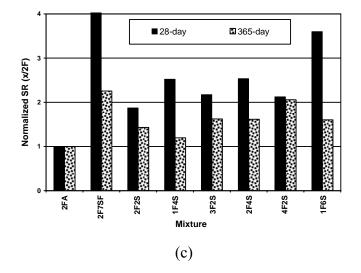
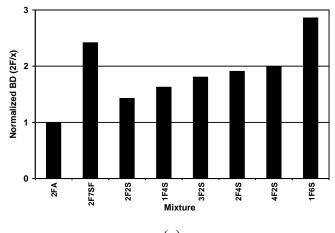
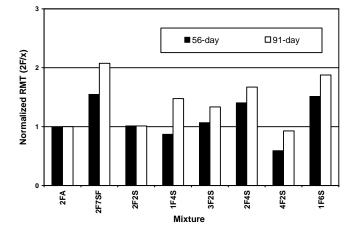




Figure 79 Durability comparison for class IV with AASHTO PC

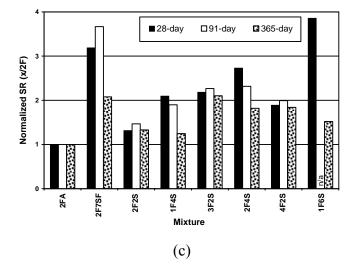


Figure 80 Durability comparison for class V with AASHTO PC

The durability performance of the two PC is compared by looking at the average results across concrete class for each measure of durability. Table 10 shows the average diffusion coefficients and resistivity on the indicated ages. In general, the only significant difference is seen in BD (51%) and 91-day RMT (8%), while the other measures are comparable. The average BD result for ASTM cement is 51% greater than that of the AASHTO cement and the average RMT result for the ASTM cement is 8% greater than that of the AASHTO cement. It is not clear why the two cement types give such different results for the BD test and yet the electrical methods of determining chloride penetration give comparable results. One possibility is that the slower hydration of the more coarsely ground AASHTO PC contributed to a more tortuous pore structure compared to that of the more finely ground ASTM PC. The ASTM PC may have hydrated very quickly during the early ages creating a pore structures that contributed to a higher permeability. In contrast, the electrical methods give comparable results because the total mass of cementitious materials was comparable between the two sets of mixtures resulting in similar electrical properties. This may also be an indication that when the diffusion coefficients are very low as they are for all of the mixtures tested, then the electrical methods are not as sensitive to changes in the pore structures because the density is so great. It is not clear the implication of the findings on the long term behavior of the concrete, if any.

Using Table 10 to compare the concrete classes, the higher strength mixtures generally exhibited a higher resistance to chloride penetration. Recall that for both BD and RMT, the resistance to chloride penetration improves as the permeability is reduced. Conversely, for SR the chloride resistance improves when the resistance increases. For ASTM mixtures, with the exception of the 91-day RMT, there is less than 5% difference in the class IV and class V results.

PC	Class	BD (*10 ⁻¹² m ² /sec)	RMT (*10 ⁻¹² m ² /sec)		SR (kΩ-cm)			
Туре		365-day	56-day	91-day	28-day	91-day	365-day	
	IV	2.70	4.52	4.05	25	42.7	104	
ASTM	V	2.59	4.75	4.81	25.1	40.6	100	
	Avg.	2.64	4.65	4.43	25.1	41.6	102	
	IV	2.02	4.88	3.7	25.3	n/a	118	
AASHTO	V	1.53	4.45	4.5	21.3	49.1	70.6	
	Avg.	1.75	4.67	4.10	23.3	n/a	94.2	

Table 10 Comparison of durability test results.

The 91-day RMT results indicate a nearly 20% greater average diffusion coefficient in class V mixture, when the coefficient is expected to be smaller. For AASHTO mixtures, BD and 28-day SR show an improvement (24% and 16%) in chloride resistance while 56 and 91 day RMT and 365 day SR show a reduction (9%, 21%, and 40%) in chloride resistance for the class V mixture. It is not known if this is due to systematic or natural variability in the materials and test methods or to a behavioral difference among the mixtures.

Figure 81 shows a summary of the normalized chloride resistance results presented in Figure 77 through Figure 80. The final value for each mixture is an average of the results from both PC types and both concrete classes. Furthermore, the value includes the normalized 365day BD, 56- and 91-day RMT; and 28- and 365-day SR results. Note that the 91-day data were not included due to missing values. These normalized results are averaged into a single value to enable ranking of the ternary mixture chloride resistance as measured by the durability test methods performed in this research. The results indicate that the SF mixture provides the best choice. Beyond that, the mixtures with moderate volumes of FA and larger volumes of S appear to out perform those mixtures containing larger volumes of FA and smaller volumes of S. Overall, the chloride resistance of all of the ternary mixtures were improved over that of the binary control, with some having only marginal improvement.

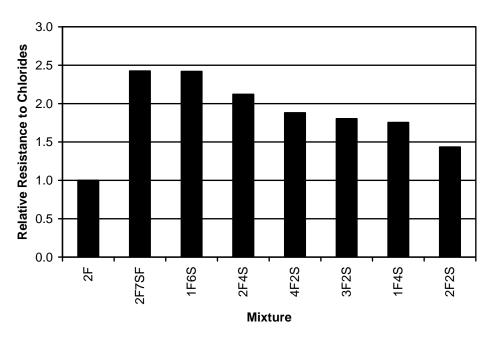


Figure 81 Relative resistance to chloride penetration.

Mixture design in which the relative proportions of the components are varied, but the total quantity is not, can be studied using a simplex-lattice design matrix or more simply a simplex-centroid matrix (Wadsworth 1998). These approaches, however, require a specific array of mixture proportions that were not used in this testing. Nevertheless, there were a sufficient number of variables to fit equations to the bulk diffusion data. A multivariate regression was conducted on the bulk diffusion data to obtain a second order polynomial equation for each of the four categories of mixtures designs.

$$BD(x, y) = (\beta_1 x^2 + \beta_2 y^2 + \beta_3 x + \beta_4 y + \beta_5 x y + \beta_6) * 10^{-12} \frac{m^2}{\text{sec}}$$
 Equation 5

$$x + y + z = 1$$
 Equation 6

where BD (x,y), is the predicted diffusion coefficient from the bulk diffusion test (m²/sec), x represents the fractional proportion of fly ash, y represents the fractional proportion of slag, z represents the fractional proportion of portland cement, and β_i are the regression coefficients. The equation coefficients for each category along with the coefficient of determination for each of the equations is shown in

Mixture Category	β_1	eta_2	β_3	eta_4	β_5	eta_6	R^2
ASTM IV	0.00276	0.001897	0.2620	0.1850	-0.00659	-0.92	0.975
ASTM V	0.00508	0.000691	-0.4360	-0.1780	0.00516	10.75	0.977
AASHTO IV	0.00147	0.000350	-0.1625	-0.0929	0.00238	5.29	0.999
AASHTO V	0.00201	0.000635	-0.0750	-0.0436	-0.00131	3.78	1.000

Table 11 – Equation coefficients for bulk diffusion regression.

The equations are particularly useful when viewed in a ternary plot. These types of plots are used when there are three variables that sum to a constant for each point so that the third point is always dependent on the sum of the other two points. In Figure 82 through Figure 85 the variables for the four main categories are plotted as single points. The six ternary blends are plotted along with the control mixture containing only FA and PC. The SF mixture is not included in the plots. Each axis gives the percentage of that component in terms of weight, out of the total weight of cementitious materials.

Equation 5 and Equation 6 were used to formulate diffusion coefficient contours. The dashed line delineates the area of the plot representative of the mixtures used in the test program. The contours are not plotted outside these lines to avoid extrapolation of the regression. In general the contours form a saddle shape, which is a result of the second order function used to model the bulk diffusion data. The AASHTO Class IV, however, does not follow this trend, which is likely due to the missing data point for the 60% S mixture.

In general, the ternary plots confirm the combined results presented in Figure 81. FA quantities in the 10 to 20% range in combination with 40 to 60% S provide the best performance in the lowest diffusion coefficients.

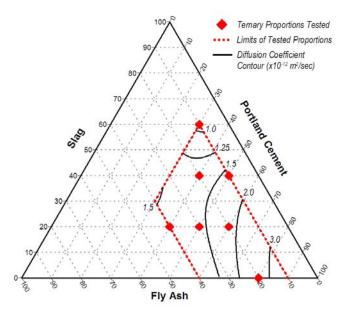


Figure 82 – AASHTO Class IV

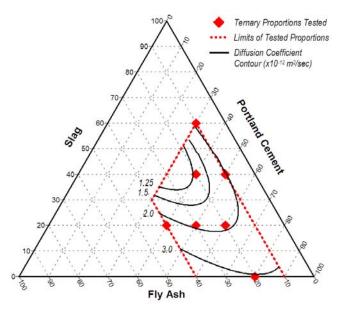


Figure 83 – AASHTO Class V

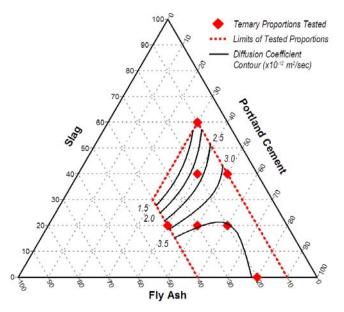


Figure 84 – ASTM Class IV

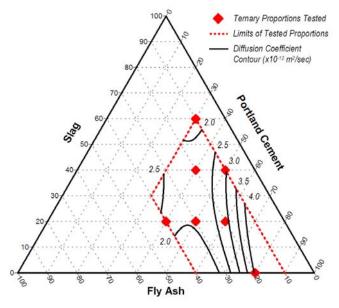


Figure 85 – ASTM Class V

8 DECISION MATRIX

The mechanical properties and durability of a concrete are both important factors for structures placed in extremely corrosive environment. Consequently, both mechanical and durability factors were considered in an effort to determine the group of ternary mixtures with the best suited attributes. A decision matrix was created to determine the best all-around performing mixtures. This chapter describes the method and rationale for the decision matrix used to order ternary concrete mixtures with regards to mechanical properties and durability. While the primary focus of this investigation is to determine the suitability of ternary mixtures in marine environments, this decision matrix will highlight other SCM proportions of FA and S that will assist the FDOT in future projects.

8.1 CRITERIA FOR MECHANICAL PROPERTIES

8.1.1 COMPRESSIVE STRENGTH

Early strength development in concrete mixtures is important to consider due to the high compressive stresses generated during prestressing. Because a large number of the structures exposed to extremely corrosive environments are prestressed bridge piles sufficient early strength is necessary to allow timely prestress transfer. This allows the piles to be produced more quickly resulting in economic savings. To account for this advantage, points were assigned based on a sliding scale that gave benefit to the mixtures that reached higher 7-day compressive strengths. The mixtures that were ranked in the highest 20% of the 7-day compressive strengths were assigned 5 points each. The mixtures that ranked in the next highest 20% of 7-day compressive strengths were assigned 4 points each. This formula was continued until the lowest ranked 20% were assigned 1 point each.

FDOT requires the 28 day ultimate compressive stresses of 5500ksi and 6500 ksi for Class IV and Class V concretes, respectively. Due to this requirement concretes that exceed the specified compressive limits are assigned 5 points. Specimens that do not meet the ACI compressive stress requirements receive 0 points. For this study, none of the mixtures tested below the required compressive strengths.

8.1.2 MODULUS OF ELASTICITY

Similar to compressive strength, the early modulus of elasticity is highly important to ensure the serviceability of a concrete structure. Low modulus of elasticity values could potentially produce long term deflection problems and poor stiffness of the structure during construction. 1, 3 or 5 points were assigned to ternary mixtures at 7, 28 and 56 day testing dates. 5 points were assigned at each testing date where the modulus of elasticity exceeded 4000 ksi. 3 points were assigned at each testing date where the modulus of elasticity ranged between 3000-4000 ksi. 1 point was assigned at each testing date where the modulus of elasticity was found to be less than 3000ksi. Ternary mixtures performing around the scoring threshold values were assigned points on a case by case basis. The total number of points awarded for each mixture at each testing date was averaged, and the averaged score was used to represent the modulus of elasticity value in the decision matrix.

8.1.3 SPLIT TENSILE

Tensile strength of concrete has a direct effect on the ultimate capacity and the degree of cracking experienced in a concrete structure. High degrees of cracking result in increased corrosion rates due to increased permeability. Split tensile tests have been a long standing method to assess the ultimate tensile strength for concrete mixtures. Due to the high variability seen in the split tensile data a pass/fail system was used to assign points for the decision matrix. Specimens that exceed the suggested ACI estimated 28 day split tensile values of $7.5*\sqrt{f'}c$ were awarded 5 points and mixtures not meeting this requirement were assigned 0 points. It is important to note that the *f*'c values used for this analysis were the ACI 28 day specified values of 5500ksi and 6500ksi for Class IV and V concretes.

8.1.4 MODULUS OF RUPTURE

Because split cylinder tests can give variable results, modulus of rupture tests were also conducted to ensure a complete tensile strength analysis. Each SCM mixture tested at 364 days for MOR that exceeds the ASTM C 78 estimated value of 10*f'c (psi) received 5 points. Three points were assigned for values exceeding 90% of the previous requirement. Zero points were assigned to SCM mixtures that do meet either of the two requirements.

8.2 CRITERIA FOR DURABILITY

8.2.1 SURFACE RESISTIVITY

Points were assigned on a sliding scale for both early age and late age surface resistivity (SR) readings. To address short term performance, a total of 2-10 points were assigned for specimens tested at 28 days. The average SR readings for each ternary blend mixture were compared against the levels shown in Table 7. Mean surface resistivity results for each SCM mixture that are classified in Table 7 as negligible were assigned 10 points. Average SR readings classified as very low were assigned 8 points. Average SR readings classified as low were assigned 6 points. Average SR readings classified as Moderate were assigned 4 points, and SR readings classified as High were assigned 2 points.

Late age SR performance was measured using a similar approach. A total of 2-10 points were assigned for the 365 day testing age. The average SR reading for each ternary blend mixture was compared against the mean of all of SR readings found at each testing date. Average ternary mixture SR results performing 1 standard deviation above the mean of the entire testing population received 10 points for each test date. Two (2) points were subtracted for each half standard deviation below the 10 point value. The total points assigned by the long term analysis were averaged to create a scoring range of 2-10 points.

8.2.2 RAPID MIGRATION TEST

For the RMT results 2-10 points were assigned for the 91 day testing results on a sliding scale. RMT results for each ternary blend mixture with results below 1 standard deviation of the mean RMT value for the entire specimen population were assigned 10 points. Two (1) point were removed for each half standard deviation above the 10 point value. The scoring range is shown Table 12.

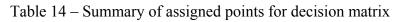
RMT Diffusion $(10^{-12} \text{ m}^2/\text{sec})$	Assigned Point Total
2.63 or below	10
2.63 - 3.44	8
3.44 - 4.26	6
4.26 - 5.08	4
5.08 or above	2

Table 12 – Scoring range for 91 RMT results

8.2.3 BULK DIFFUSION TEST

Because of the approaching deadline for pile construction, final mixture designs were needed before later age testing could be completed. Consequently, ninety-one day data for the first series of specimens and 28 day data for the second series were available for use in selecting the mixture designs.

BD $(10^{-12} \text{ m}^2/\text{sec})$	Assigned Point Total
1.46 or below	10
1.46 - 1.84	8
1.84 - 2.22	6
2.22 - 2.59	4
2.59 or above	2


Table 13 – Scoring range for 364-day BD results

8.3 DECISION MATRIX RESULTS

Table 14 summarizes the scoring used to rank the mixtures in the decision matrix. Forty percent of the score is devoted to mechanical properties and the remaining 60% covers the durability properties. The maximum possible score is 50. Figure 86 and Figure 87 present the results for ASTM PC and AASHTO PC, respectively. The y-axis is set to the maximum score of 50 and the control mixture is plotted in the leftmost position within each chart. The mixtures are then plotted left to right from the highest to lowest scores. The 1F6S mixture is not included in Figure 87a because the data set was not complete for that mixture, which would result in an artificially low score. This is due to the lack of bulk diffusion test results for this mixture. To provide a complete comparison for this category, the decision matrix was recomputed without the bulk diffusion test results. The plot for this is shown in Figure 88. Note that the maximum possible score for this combination is 40.

In general, the comparative performance of the mixtures improved when the quantities of S were increased. To provide significant improvement in overall performance more that 20% S was needed (40 - 60 %). In addition, larger quantities of FA (40%) consistently ranked near the lowest in terms of performance. Consequently, the best combination appears to be moderate quantities of FA (10-20%) in combination with larger quantities of S (40-60%) to provide improved durability and mechanical properties.

Test Method	Assigned Points
Compressive Strength (7-day)	5
Compressive Strength (28-day)	5
Modulus of Elasticity	5
(average of ratings for 7, 14, and 56 days)	
Split Tensile (28-day)	5
Surface Resistivity (average of ratings for 7, 14,	10
and 364 days)	
Rapid Migration (91-day)	10
Bulk Diffusions (364-day)	10
Total	50

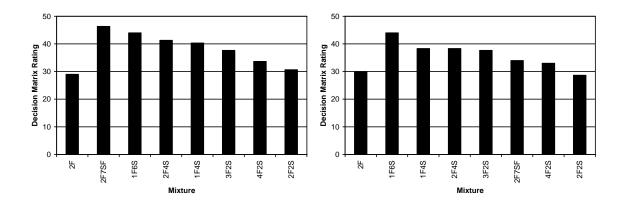


Figure 86 – Decision Matrix results for (a) ASTM Class IV and (b) ASTM Class V.

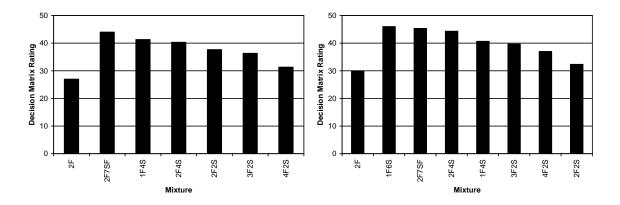


Figure 87 – Decision Matrix results for (a) AASHTO Class IV and (b) AASHTO Class V.

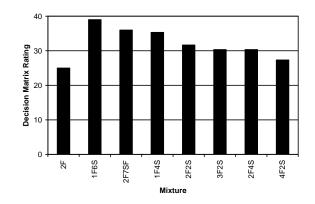


Figure 88 – Decision Matrix results for AASHTO Class IV without bulk diffusion test data.

9 SUMMARY AND CONCLUSIONS

This research had two primary objectives. The first was to evaluate the variation in durability and mechanical properties of two types of ordinary Portland cement (PC). One was AASHTO M85 type II and the other was ASTM C150 Type I. The cements were produced under the old specification system before the cement standards were harmonized. The second was to evaluate the durability and mechanical properties of various ternary cementitious materials systems.

Thirty-two ternary and binary mixtures (not including duplicate mixtures) containing varying quantities of fly ash (FA), blast furnace slag (S), and silica fume (SF) were batched. Mechanical and durability tests were conducted. The mechanical tests included compressive strength, modulus of elasticity, compressive creep, split tensile strength, and modulus of rupture. The durability tests conducted for this investigation were rapid migration test, corrosion of embedded steel, surface resistivity, and bulk diffusion. The following are the important results of the research:

- Early age (seven day) compressive strengths of mixtures with both PC types and concrete strengths were comparable, with the exception of the mixtures containing high quantities of FA (40%).
- In comparing mixtures with 20% FA and varying S, there appears to be an early age effect. As S quantities increase, the seven-day compressive strength decreases.
- For class V mixtures the early age strengths of ASTM PC was greater than that of the AASHTO PC in all cases. For class IV mixtures about half of the ASTM PC mixtures had greater early age compressive strengths than that of the AASHTO PC mixtures.
- Some of the mixtures with higher FA content had delayed gains in compressive strength.
 Specified 28-day concrete strength requirements of Class IV (5,500 psi) and Class V (6,500 psi), however, were exceeded by all of the mixtures.
- The age difference between the 7-day and 28-day tests appears to have minimized the effect of the PC fineness as the there is not a significant difference in 28-day compressive strength between ASTM and AASHTO PC.

- The ASTM PC mixtures have higher diffusion coefficients with an average of 2.70 and 2.59E-12 m²/sec for Class IV and Class V concrete mixtures while the AASHTO PC mixtures have an average of 2.02 and 1.53E-12 m²/sec for Class IV and Class V concrete mixtures.
- Comparison of durability data for ASTM PC and AASHTO PC indicated no clear trend relative to the cement type.
- All ternary blends had better resistance to chloride penetration relative to that of the control mixture.
- Early age durability as measured by SR indicated that all mixtures, including one containing 40% FA (with 20% S) showed improvement over FA alone.
- Combinations of moderate quantities of FA (10-20%) in with larger quantities of S (40-60%) provided the best improvement in chloride resistance and mechanical properties.

Powder x-ray diffraction was used to determine whether or not CH hydration was effected by different ternary blend ratios. The following summarizes the findings of the XRD work:

- The pilot study has shown that differences in hydration relative to CH can be seen and tracked over time as well as qualitatively compared to other mixes.
- The hardened pastes showed involved interaction with the reactants C3S and C2S.
- The availability of certain <u>reactants</u> or <u>reaction products</u> (which is related to the type of portland cement) can be affected by large relative proportions of supplementary cementitious materials.
- SEM imaging has shown that as SCM volumes are increased, the net volume of CH available for pozzolanic reaction decreases, resulting in unreacted SCM. This work has also indicated that the early reaction of S may consume available CH, which then may starve the FA reaction at later ages. The possibility of having unreacted material within the final system is evident but hard to conclude with the work done in the scope of this study. Specific recommendations for further study are made in the Recommendations.

10 RECOMMENDATIONS

The primary objective of this research was to evaluate the mechanical and durability properties of PC-FA-S mixtures in relation to those of PC-FA-SF mixtures. The primary interest is in the resistance to chloride penetration in a harsh marine environment. The following make up the recommendations for implementation of these results into FDOT Specifications.

10.1 MECHANICAL PROPERTIES

The use of ternary combinations of fly ash, slag, and ordinary portland cement did not provide a clear advantage in the mechanical properties over that of the control mixture containing 20%FA. Furthermore, creep results were inconclusive. Consequently, no recommendations are made regarding mechanical properties. SF did not provide a significant strength advantage over the other mixes at 7 days and beyond. Tests for high-early strength prior to 7 days were not conducted. This and lack of information on creep may be a consideration if ternary mixtures are implemented in precast, prestressed concrete.

10.2 SLIGHTLY AND MODERATELY AGGRESSIVE ENVIRONMENTS

Current FDOT specifications allow the replacement of cementitious materials with 58 to 62% slag in drilled shafts and up to 70% in precast concrete and other selected elements. Depending on the application, smaller proportions of fly ash may be used in combination with slag. Clearly, FDOT already allows the use of slag in a broad array of concrete elements in a variety of environments. The research presented in this report evaluated the mechanical and durability properties of mixtures with 10% to 40% fly ash and 20% to 60% slag and found that both early age (28-day) and late age (1-year) indicators of chloride resistance showed that all mixtures had improved performance over that of the 20% fly ash mixtures. Therefore, continued use of the slag in combination with fly ash is recommended.

10.3 EXTREMELY AGGRESSIVE ENVIRONMENTS (DUE TO CHLORIDES)

The FDOT Structures Design Guidelines (from General Requirements January 2009) currently indicate that when the environmental classification is Extremely Aggressive due to the presence of chloride in the water of a marine environment. Silica fume (or metakaolin, or ultrafine fly ash) is to be used in all:

a.) Piles of pile bents.

b.) Columns or walls within the "splash zone."

c.) Sections of post-tensioned cylinder piles within the "splash zone" plus one section above and below the "splash zone" limits.

FDOT Specification 346 (12-22-08) indicates that silica fume use should fall between 7 to 9 percent by replacement weight of cementitious materials. Furthermore, the specifications indicate that precast concrete should contain no less than 18% fly ash. Based on the results of this research, in particular, the resistance to chloride penetration, the use of 10-20% fly ash + 50 to 60% slag gives chloride resistance similar to that obtained from 20% fly ash in combination with 7% silica fume, with 10% fly ash + 60% slag giving the best results. This is true for both Class IV and Class V mixtures and both portland cement specifications. The only slag mixture, however, to consistently meet the minimum 28-day surface resistivity requirements of 29 kOhm-cm (FDOT 346-3.1(d)) for test mixtures was that containing 10% fly ash and 60% slag. Consequently, if the use of slag cement in extremely harsh environments is desired, then the proportions should be in the range of 10% fly ash + 60% slag.

10.4 FURTHER RESEARCH

Although the results of the testing in this program indicated that the performance of fly ash and slag ternary blends improved some durability aspects of the mixtures, the underlying behavior at the microstructure is not yet fully understood. Consequently, a full microstructural study on ternary blends is recommended to better understand the hydration process of the supplementary cementitious material blends and the effect of varying their relative proportions. This study may include:

- More detailed XRD analysis
 - Longer scan rates for each
 - More specific 2-theta range
 - o Detailed look at the unit cell structure for each mix during hydration
 - Preferred orientation of CH during hydration (with and without aggregate)
 - o Detailed look at concrete systems using Grazing Angle XRD

- Further investigation of the effect of dissolution/creation of CH on the microstructure and its components
- Petrographical study on the mineral formation of different ternary blends during hydration
- SEM analysis of the paste structure and the concrete system comparison to physical testing results.

Each of these steps can bring us closer to understating the true microstructure of ternary blends and its mechanisms. The relationship of microstructure and physical performance can be translated to more durable and better performing binders and concrete systems.

REFERENCES

- AASHTO M85 (2008). "Standard Specification for Portland Cement." American Association of States Highway and Transportation Officials.
- AASHTO T 23 (1993). "Standard Method of Test for Making and Curing Concrete Test Specimens." American Association of States Highway and Transportation Officials.
- AASHTO T 259-80 (1993). "Standard Method of Test for Resistance of Concrete to Chloride Ion Penetration." American Association of States Highway and Transportation Officials.
- AASHTO T 260-97 (2001) "Sampling and Testing for Chloride Ion in concrete and Concrete Raw Materials." American Association of States Highway and Transportation Officials.
- AASHTO T 277-86 (1990). "Rapid Determination of the Chloride Permeability of Concrete." American Association of States Highway and Transportation Officials.
- ACI 211.1-91 (1991). "Standard practice for selecting proportions for normal, heavyweight, and mass concrete." *ACI Manual of Concrete Practice*.
- ACI 232.2R-03 (2003). "Use of Fly Ash in Concrete.", ACI Manual of Concrete Practice.
- ACI 233R-03 (2003). "Slag Cement in Concrete and Mortar.", ACI Manual of Concrete Practice.
- ACI 234R-06 (2006). "Guide for the Use of Silica Fume in Concrete.", ACI Manual of Concrete Practice.
- ACI 318-05 (2005). "Building Code Requirements on Structural Concrete and Commentary, ACI Manual of Concrete Practice.
- ASTM C78 (2002) "Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading)." American Society for Testing and Materials.
- ASTM C138 (2001). "Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete." American Society for Testing and Materials.
- ASTM C143 (2000). "Standard Test Method for Slump of Hydraulic Cement Concrete." American Society for Testing and Materials.

- ASTM C150 (2007) "Standard Specification for Portland Cement." American Society for Testing and Materials.
- ASTM C173 (2001). "Standard Test Method for Air Content of Freshly Mixed Concrete by the Volumetric Method." American Society for Testing and Materials.
- ASTM C512 (2002) "Standard Test Method for Creep of Concrete in Compression." American Society for Testing and Materials.
- ASTM C1556 (2003) "Standard Test Method for Determining the Apparent Chloride Diffusion Coefficient of Cementitious Mixtures by Bulk Diffusion." American Society for Testing and Materials
- ASTM C1202 (1997) "Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration." American Society for Testing and Materials
- ASTM G 109 (2005) "Standard Test Method for Determining the Effects of Chemical Admixtures on the Corrosion of Embedded Steel Reinforcement in Concrete Exposed to Chloride Environments" American Society for Testing and Materials
- ASTM C1064 (1999). "Standard Test Method for Temperature of Freshly Mixed Portland Cement Concrete." American Society for Testing and Materials.
- Andrade, C., Castellote, C., Alonso, C. and González, C. (1999). "Relation Between Colorimetric Chloride Penetration Depth and Charge Passed in Migration Tests of the Type of Standard ASTM C1202-91." Cement and Concrete Research, 29(3), pp 417-421.
- Bágel, L.,"Strength and pore structure of ternary blended cement mortars containing blast furnace slag and silica fume," *Cement and Concrete Research*, v 28 n 7, Jul 1998, pp 1011-1022.
- Bakker, R. F. (1980), On the Cause if Increased Resistance of Concrete Made from Blast-Furnace Cement to Alkali Reaction and to Sulfate Corrosion, Thesis, RWTH-Aachen, 118.

- Berube, M. A., Duchesne, J. and Frenette, J. (1998). "Influence of Storage Conditions and Concrete Composition on the Effectiveness of Different Silica Fume Against ASR."
 Proceedings of the 6th CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, Supplementary Book, pp 1127-1147.
- Bleszynski, R., Hooton, R. D., Thomas, M. D. A., and Rogers, C.A., "Durability of ternary blend concrete with silica fume and blast-furnace slag: Laboratory and outdoor exposure site studies," *ACI Materials Journal* v 99 n 5 Sep/Oct 2002 pp 499-508.
- Brooks, J. J., Wainwright, P. J., and Boukendakji M. (1992). "Influence of Slag Type and Replacement Level on Strength Elasticity, Shrinkage and Creep of Concrete." Special Publication, American Concrete Institute, V. 132, pp 1325-1342.
- Chini, A.R, Muszynski, L.C. and Hicks, J. (2003). "Determination of Acceptance Permeability Characteristics for Performance-Related Specifications for Portland Cement Concrete." Final Report No. BC 354-41, Florida Department of Transportation.
- Cook, J.E., (1983). "Fly Ash in Concrete-Technical Considerations." Concrete International: Design and Construction, 5(9), pp 51-59.
- Dehuai, W. and Zhaoyuan, C., "On predicting compressive strengths of mortars with ternary blends of cement, ggbfs and fly ash," *Cement and Concrete Research* v 27 n 4 Apr 1997 pp 487-493.
- Diamond, S., "Calcium hydroxide in cement paste and concrete a microstructural appraisal," Material Science of Concrete – Special Volume: Calcium Hydroxide in Concrete, 2001, pp 37-58.
- Domone, P. L. and Soutsos, M. N., "Properties of high-strength concrete mixes containing PFA and ggbs," *Magazine of Concrete Research* v 47 n 173 Dec 1995 pp 355-367.
- Douglas, E. and Pouskouleli, G., "Prediction of compressive strength of mortars made with portland cement blast-furnace slag fly ash blends," *Cement and Concrete Research* v 21 n 4 Jul 1991 pp 523-534.

- Erdem T.K., Kirca O., (2008). "Use of Binary and Ternary Blends in High Strength Concrete", Construction and Building Materials, 22, pp 1477-1483.
- Escalante-Garcia, J. and Sharp, J. H., "The chemical composition and microstructure of hydration products in blended cements," *Cement and Concrete Composites (26)*, 2004, pp 967-976.
- Feng, X., Garboczi, E.J., Bentz, D.P., Sutzman, P.E., and Mason, T.O., "Estimation of the degree of hydration of blended cement pastes by a scanning electron microscope point-counting procedure," *Cement and Concrete Research (34)*, 2004, pp 1787-1793.
- FM 5-516 (2005). "Florida Method of Test for Determining Low-Levels of Chloride in Concrete and Raw Materials." Florida Department of Transportation (FDOT).
- FM 5-578 (2004). "Florida Method of Test for Concrete Resistivity as an Electrical Indicator of its Permeability." Florida Department of Transportation (FDOT).
- FDOT SDG 2007. "Structures Design Guidelines." Florida Department of Transportation (FDOT).
- Haque, M.N. and Chulilung, T., "Strength development of slag and ternary blend concrete," *Cement and Concrete Research* v 20 n 1 Jan 1990 pp 120-130.
- Helmuth, R., Fly Ash in Cement and Concrete, Portland Cement Association, Skokie, IL. 1987.
- Hill, S. and Sharp, J., "The mineralogy and microstructure of three composite cements with high replacement levels," *Cement and Concrete Research (24)*, 2002, pp191-199.
- Hogan, F.J. and Muesel, J.W. (1981). "The evaluation of durability and strength development of a ground granulated blast –furnace slag." Cement, Concrete, and Aggregates, 3(1), pp 41-52.
- Hooton, R. D., and Emery, J. J. (1990). "Sulfate Resistance of a Canadian Slag Cement," ACI Materials Journal, 87(6), pp 547-555.

- Hooton, R. D. (1993). "Influence of Silica Fume Replacement of Cement on Physical Properties and Resistance to Sulfate Attack, Freezing, and Thawing, and Alkali-Silica Reactivity." ACI Material Journal, 90(2), pp 143-151.
- Houde, J., Prezeau, A., and Tremblay, S. (1989). Supplementary Papers. Proceedings, Third Internation Conference on Fly Ash, Silica Fume, and Natural Pozzolans in Concrete.
- Hooton, R.D., Thomas, M.D.A. and Stanish, K. (2001). "Prediction of Chloride Penetration in Concrete." Final Report No. FHWA/RD-00/142, Federal Highway Administration.
- Isaia, G. C., Gastaldini, A. L. G., and Moraes, R., "Physical and pozzolanic action of mineral additions on the mechanical strength of high-performance concrete," *Cement and Concrete Composites* v 25 n 1 Jan 2003 pp 69-76.
- Ji, T. (2005). "Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO₂." *Cement and Concrete Research*, 35(10), pp 1943-1947.
- Jo, BW, Kim, CH, Tae, GH, and Park, JB. (2007). "Characteristics of Cement Mortar with Nano-SiO₂ Particles," *Construction and Building Materials* 21, pp 1351-1355.
- Jones, M. R., Dhir, R. K., and Magee, B. J., "Concrete containing ternary blended binders: Resistance to chloride ingress and carbonation," *Cement and Concrete Research* v 27 n 6 Jun 1997 pp 825-831.
- Khan, M. I. and Lynsdale, C. J., "Strength, permeability, and carbonation of high-performance concrete," *Cement and Concrete Research* v 32 n 1 Jan 2002 pp 123-131.
- Khan, M. I., Lynsdale, C. J., and Waldron, P., "Porosity and strength of PFA/SF/OPC ternary blended paste," *Cement and Concrete Research* v 30 n 8 Aug 2000 pp 1225-1229.
- Khatri, R. P., and Sirivivatnanon V. (1995). "Effect of Different Supplementary Cementitious Materials on Mechanical Properties of High Performance Concrete." Cement and Concrete Research, 25(1), pp 209-220.

- Khatri, R. P., Sirivivatnanon V., and Yu K. L (1997). "Effect of Curing on Water Permeability of Concrete Prepared with normal Portland Cement and with Slag and Silica Fume." Magazine of Concrete Research, 49(180), pp 167-172.
- Lane, R. O. and Best, J. F. (1982) "Properties and Use of Fly Ash in Portland Cement Concrete." Concrete International: Design and Construction, 4(7), pp 81-92.
- Lane, D. S. and Ozyildirim, C. "Preventive measures for alkali-silica reactions (binary and ternary systems)," *Cement and Concrete Research* v 29 n 8 Aug 1999 pp 1281-1288.
- Langford, P. and Broomfield, J. (1987). "Monitoring the Corrosion of Reinforcing Steel." Construction Repair, 1(2), pp 32-36.
- Li, G. and Zhao, X. (2002). "Properties of Concrete Incorporating Fly Ash and Ground Granulated Blast-Furnace Slag." Cement and Concrete Composites, 25(3), pp 293-299.
- Lea, F. M., The Chemistry of Cement and Concrete, 3rd ed. Arnold, London, 1970.
- Long, G., Wang, X., and Xie, Y., "Very-high-performance concrete with ultrafine powders," *Cement and Concrete Research*, v 32, n 4, Apr 2002, pp 601-605.
- Luther, M. and Hansen, W. (1989). "Comparison of Creep and Shrinkage of High Strength Concretes with Fly Ash Concrete of Similar Strengths." Proceedings, CANMET/ACI, SP-114.
- Mehta, Monteiro, *Concrete: Structure, Properties and Materials*, 2nd ed. Prentice Hall, Englewood Cliffs, NJ, 1993.
- Mehta, R. K. and Gjoerv O. E., (1982) "Properties of Portland Cement Concrete Containing Fly Ash and Condense Silica-Fume." Cement and Concrete Research, 12(5), 587-595.
- Menendez, G., Bonavetti, V., and Irassar, E. F., "Strength development of ternary blended cement with limestone filler and blast-furnace slag," *Cement and Concrete Composites* v 25 n 1 Jan 2003 pp 61-67.

- Mindess, S., "The strength and fracture of concrete: the role of the calcium hydroxide," *Material Science of Concrete – Special Volume: Calcium Hydroxide in Concrete*, 2001, pp 143-154.
- Mindess, S., Young, J. F. and Darwin, D. (2002). "Concrete." Second Edition, Prentice-Hall.
- Nawy, E.G., *Fundamentals of High-Performance Concrete* 2nd ed., John Wiley & Sons, Inc., 2001.
- Nehdi, M.L. and Sumner, J., "Optimization of ternary cementitious mortar blends using factorial experimental plans," *Materials and Structures/Materiaux et Constructions* v 35 n 252 SPEC. Sep/Oct 2002 pp 495-503.
- Nehdi, M. L., "Ternary and Quaternary Cements for Sustainable Development," *Concrete International*, American Concrete Institute, April 2001, pp. 35-42
- Neville, A. M. (1995) "Properties of Concrete." Fourth Edition, Pearson Education.
- Pattanaik, S., Huffman, G.P., Sahu, S., and Lee, R.J., "X-ray absorption fine structure spectroscopy and X-ray diffraction study of cementitious materials derived from coal combustion by-products," *Cement and Concrete Research (42)*, 2004, pp 1243-1249.
- Popovics, S., "Portland cement-fly ash-silica fume systems in concrete," *Advanced Cement Based Materials* v 1 n 2 Dec 1993 pp 83-91.
- Ramlochan, T., Thomas, M.D.A., and Hooton, R.D., "The effect of pozzolans and slag on the expansion of mortars cured at elevated temperatures. Part II: Microstructural and micromechanical investigations," *Cement and Concrete Research*, 2004, pp 1341-1356.
- Saeki, T. and Monteiro, P.J.M., "A model to predict the amount of calcium hydroxide in concrete containing mineral admixtures," *Cement and Concrete Research (35)*, 2005, pp 1914-1921.
- Shehata, M. H. and Thomas, D. A. (2002), "Use of Ternary Blends Containing Silica Fume and Fly Ash to Suppress Expansion Due to Alkali-Silica Reaction in Concrete." Cement and Concrete Research, 32(3), pp 341-349.

Taylor, H.F.W., Cement Chemistry, 2nd ed. Thomas Telford, London, 2003.

- Temiz, H. and Karakeci, A.Y., "An investigation on microstructure of cement paste containing fly ash and silica fume," *Cement and Concrete Research (32)*, 2002, pp 1131-1132.
- Thomas, M. D. A., Shehata, M. H., Shashiprakash, S. G., Hopkins, D. S., and Cail., K. "Use of ternary cementitious systems containing silica fume and fly ash in concrete," *Cement and Concrete Research* v 29 n 8 Aug 1999 pp 1207-1214.
- Turanli, L. and Bektas, F., "Effects of large amounts of natural pozzolans addition of blended cements," *Cement and Concrete Research (35)*, 2005, pp 1106-1111.
- Vivas, E., Boyd, A., Hamilton III, H. R., "Permeability of Concrete Comparison of Conductivity and Diffusion Methods," University of Florida Research Report BD536, Florida Department of Transportation, June 2007, 238 pp.
- Whiting, D. and Ditwiler, R. (1998). "Silica Fume Concrete for Bridge Decks." NCHRP Report No. 410, 105 pp.
- Whiting, D. and Mohamad, N. (2003) "Electrical Resistivity of Concrete-A Literature Review." Portland Cement Association, R&D Serial No. 2457.
- Wadsworth, H. M. (1998) *The Handbook of Statistical Methods for Engineers and Scientists*, McGraw-Hill, Inc., New York, NY, 788 pp.

APPENDIX A – MATERIALS AND MIXTURE INFORMATION

Certificate of Analysis for Sample ID:0600015961 Resolution Sample: NO Project No.: 1909701A101Contract ID: N/A Pay Item: N/A Material:465 IV Material ID on Spec.: 465 IV Sample Number: C0002 QPL ID: Design Mix Mix Type: Plant: 000 Lot: Sublot: Terminal: Manufacturer or Producer: RINKER - COLUMBIA	Date	State of Florida State Materials 5007 NE 39th Ave Gainesville 352/955-6600 Lab ID: DSM00	Office nue FL 32609
Aggregate Sample Type: Process: Sample Status: REPORTED AC: Compares Favorably Post Approval Disposition:			006 By RT822RD
Loggers Remarks: RINKER TYPE I, FULL CHEM. 8	& PHYS PROVIDE FIN	IGERPRINT	
C114-INSOL ASTM C114 Cement Acid Insolu Tested :04/10/2006 By: T24516046-000 Comment: Validated:04/11/2006 By RT825DT Technician Qualification Status:N/A	uble		Test Status: VALIDATED
	<u>Rep #</u> 1	Assay Results	Primary Limits
	Insoluble residue	0.14 %/Insoluble 1.0014 SampWT 11.4976 CruxTare 11.4990 CruxAshWt	PASS none specified none specified none specified none specified
C114-LOI ASTM C114 Cement (Portland) Tested :04/10/2006 By: T24516046-000 Comment: Validated:04/11/2006 By RT825DT Technician Qualification Status:N/A		A D	Test Status: VALIDATED
	<u>Rep #</u> 1 Loss On Ignition	Assay Results 0.5 %LOI 11.4976 CruxStartWT 12.4990 CruxSampWT 12.4935 FinalWT	-
C114-I XRF ASTM C114 Cement Type I M8 Tested :03/06/2006 By: T24516046-000 Comment: Validated:03/06/2006 By RT825DT Technician Qualification Status:N/A	5		Test Status: VALIDATED
	<u>Rep #</u> 1 Magnesium Oxide	Assay Results 0.8 %	Primary Limits PASS <= 6.0
т	Sulfur Trioxide otal Alkali as Na2O	2.3 % 0.23 %	<= 3.0 <= 0.60
C151 ASTM C151-Autoclave Expansi Tested :05/02/2006 By: CAMPS Comment: Validated:05/17/2006 By RT824TD Technician Qualification Status:N/A	on Portland Cement		Test Status: VALIDATED
		Assay Results	Primary Limits PASS
Change and Po	ercentage of Change	-0.05 % -0.0404 Initial	<= 0.80 none specified
Sample_certificate_V3 bws 7/22/08			Page 1 of 2

	Change and Percentage of Change	-0.0458 Final -0.0054 Change	none specified none specified
C266 ASTM C266 Ti Tested :05/01/2006 By: THOMAS Validated:05/17/2006 By RT824TD Technician Qualification Status:N/A	me of Setting / Gillmore Needle Comment:		Test Status: VALIDATED
recimician Qualification Status.nrA	<u>Rep #</u> 1	Assay Results	Primary Limits
	Intial Set Time Final Set Time	140 min 205 min	>= 60 <= 600
C204 ASTM C204 Fi Tested :03/03/2006 By: ABDU Validated:04/11/2006 By RT825DT Technician Qualification Status:N/A	neness of Portland Cement by Air Perm. A Comment:		Test Status: VALIDATED
	<u>Rep #</u> 1 Specific surface	<u>Assay Results</u> 361.00 sqm/Kg	Primary Limits PASS none specified
Tested :05/04/2006 By: HARVEY Validated:05/24/2006 By RT820WH	Day Breaks for Compressive Strength of C Comment:	Cement	Test Status: VALIDATED
Technician Qualification Status:N/A	<u>Rep #</u> 1		Primary Limits PASS PASS
Tested :05/08/2006 By: HARVEY Validated:05/30/2006 By RT824TD	Compressive Strength Standard 3, Day Breaks for Compressive Strength of C Comment:	450.0000 PSI Cement	>=1740.00 Test Status: VALIDATED
Technician Qualification Status:N/A	<u>Rep #</u> 1	Assay Results	Primary Limits PASS
	Compressive Strength Standard 4,	380.0000 PSI	>=2760.00
Notepad:			

Sample_certificate_V3 bws 7/22/08

Page 2 of 2

Certificate of Analysis for Sample ID:0600015959 Resolution Sample: NO Project No.: 1909701A101Contract ID: N/A Pay Item: N/A Material:465 IV Material ID on Spec.: 465 IV Sample Number: C0001 QPL ID:	REAL OF FLORED	State of Florida State Materials 5007 NE 39th Ave Gainesville 352/955-6600 Lab ID: DSM00	Office enue FL 32609
Design Mix Mix Type: Plant: 000 Lot: Sublot: Terminal: Manufacturer or Producer: RINKER - MIAMI Aggregate Sample Type: Process: Sample Status: REPORTED AC: Compares Favorably Post Approval Disposition:	Date		006 By RT822RD 006 By RT822RD
Loggers Remarks: RINKER TYPE II, FULL CHE	M. & PHYS PROVIDE FI	NGERPRINT	
C114-II XRF ASTM C114 Cement Type II Tested :01/01/1940 By: T24516046-000 Comment: Validated:03/06/2006 By RT825DT Technician Qualification Status:N/A	M85		Test Status: VALIDATED
	<u>Rep #</u> 1	Assay Results	Primary Limits PASS
	Silicon Dioxide	20.5 %	>= 20.0
	Aluminum Oxide	5.2 %	<= 6.0
	Ferric Oxide Magnesium Oxide	4.5 % 1.1 %	<= 6.0 <= 6.0
	Sulfur Trioxide	2.6 %	<= 3.0
	Tricalcium Aluminate	6 %	<= 8
	Tricalcium Silicate	54 %	<= 58
	Total Alkali as Na2O	0.24 %	<= 0.60
C114-INSOL ASTM C114 Cement Acid In Tested :04/11/2006 By: T24516046-000 Comment: Validated:04/11/2006 By RT825DT Technician Qualification Status:N/A			Test Status: VALIDATED
	<u>Rep #</u> 1	Assay Results	Primary Limits PASS
	Insoluble residue	0.35 %Insoluble	none specified
		0.9790 SampWT 11.4975 CruxTare	none specified none specified
		11.5009 CruxAshWt	none specified
C114-LOI ASTM C114 Cement (Portla Tested :04/11/2006 By: T24516046-000 Comment: Validated:04/11/2006 By RT825DT Technician Qualification Status:N/A	, 8		Test Status: VALIDATED
	<u>Rep #</u> 1	Assay Results	Primary Limits
	Loss On Ignition	0.2 %LOI 12.3340 CruxStartWT 13.3220 CruxSampWT 13.3201 FinalWT	<= 3.0 none specified none specified none specified
Sample_certificate_V3 bws 7/22/08			Page 1 of 2

C151 ASTM C151-Au Tested :04/26/2006 By: ABDU Validated:05/15/2006 By RT820TJ Technician Qualification Status:N/A	toclave Expansion Portland Cement Comment:	Test Status: VALIDATED
	<u>Rep #</u> 1 <u>Assay Results</u>	Primary Limits
	Change and Percentage of Change-0.01%0.0111Initial0.0099Final-0.0012Change	<= 0.80 none specified none specified none specified
Tested :04/25/2006 By: DILLOW	ne of Setting / Gillmore Needle Comment:	Test Status: VALIDATED
Validated:05/09/2006 By RT824TD Technician Qualification Status:N/A		
recifician Qualification Status.N/A	<u>Rep #</u> 1 <u>Assay Results</u>	Primary Limits
		PASS
	Intial Set Time160 minFinal Set Time225 min	>= 60 <= 600
	eness of Portland Cement by Air Perm. Apparatus	Test Status: VALIDATED
Tested :03/03/2006 By: ABDU Validated:04/11/2006 By RT825DT Technician Qualification Status:N/A	Comment:	
recinician Qualification Status.N/A	Rep # 1 Assay Results	Primary Limits
	Specific surface 375.00 sqm/Kg	none specified
C109-3DAY ASTM C109 3-D Tested :04/28/2006 By: HARVEY	ay Breaks for Compressive Strength of Cement Comment:	Test Status: VALIDATED
Validated:05/17/2006 By RT824TD Technician Qualification Status:N/A		
Technician Qualification Status:N/A	<u>Rep #</u> 1 <u>Assay Results</u>	Primary Limits
	Compressive Strength Standard 3,760.0000 PSI	>=1450.00
Tested :05/02/2006 By: ABDU	Pay Breaks for Compressive Strength of Cement Comment:	Test Status: VALIDATED
Validated:05/17/2006 By RT824TD Technician Qualification Status:N/A		
	<u>Rep #</u> 1 <u>Assay Results</u>	Primary Limits
	Compressive Strength Standard 5,120.0000 PSI	>=2470.00
Notepad:		
]
Sample_certificate_V3 bws 7/22/08		Page 2 of 2

Du	rabil	lity ar	nd Mechanic	al Properties of T	ernary Blend Co	oncrete Resear	ch Sample	Matrix						
						Mechanical	Tests				Durability	/ Tests		Extras
			Test Meth	nod	ASTM C39 ^{1,11}	ASTM C496 ²	ASTM C512	ASTM C78	FM5-578⁵	NTBuild 492 ⁴	NTBuild 443 ⁷	ASTM ASTM C1585	I C642 G109	
		c	Common Tes	t Name	Comp. Strength	Split Tension	Comp. Creep	Flex. Beam	Surface Resistivity	RMT	Bulk Diffusion	Abcorntion	ids ume G109	Extra Samples
			Sample S	Size	4" x 8" Cylinders	4" x 8" Cylinders	6" x 12" Cylinders	4"x4"x12" Beams	4" x 8" Cylinders	4" x 8" Cylinders	4" x 8" Cylinders	4" x 8" Cylinder	rs ¹³ 11"x6"x4.5"	4" x 8" Cylinders
			Mix Name	SCMs Used					Total Numb	per of Samp	les per Test			
			TB1A4	2F	18	6	9	10	3	6	9	3	2	3
			TB1A4-2	2F	9	0	0	9	0	0		0	2	3
			TB2A4	2F7SF	18	6	9	10	3	6	9	3	2	3
			TB2A4-2	2F7SF	9	0	0	9	0	0	0	0	2	3
			TB3A4	2F2S	18	6	9	10	3	6	9	3	2	3
			TB3A4-2	2F2S	6	0	0	9	0	0	0	0	2	3
		Ω	TB4A4	1F4S	18	6	9	10	3	6	9	3	2	3
		Class	TB4A4-2	1F4S	6	0	0	9	0	0	0	0	2	3
	AS	š Ko	TB5A4	3F2S	18	6	9	10	3	6	9	3	2	3
5	STΝ	2	TB5A4-2	3F2S	3	0	0	9	0	0		0	2	3
δġ	Τ N		TB6A4	2F4S	18	6	9	10	3	6	9	3	2	3
rat	Уp		TB6A4-2	2F4S	3	0	0	9	0	0		0	2	3
ory	e //		TB7A4	4F2S	18	6	9	10	3	6	9	3	2	3
Z			TB7A4-2	4F2S	3	0	0	9	0	0		0	2	3
Laboratory Mixes) er		TB8A4	1F6S	18	6	9	10	3		9	-	2	3
s	ASTM Type I/II Cement		TB8A4-2	1F6S	3	0	0	9	0	ļ		0	2	3
	Ħ		TB1A5	2F	18		9		3	-			2	3
			TB1A5-2	2F	3	0	0	9	0	0	-	0	2	3
		0	TB2A5	2F7SF	18	6	9	10	3	6	9	3	2	3
		Class	TB3A5	2F2S	18	6	9	10	3	6	9	3	2	3
1		SS	TB4A5	1F4S	18	6	9	10	3	6	9	3	2	3
1		\leq	TB5A5	3F2S	18	6	9	10	3	6	9	3	2	3
1			TB6A5	2F4S	18	6	9	10	3	6	9	3	2	3
1			TB7A5	4F2S	18	6	9	10	3	6	-	3	2	3
L			TB8A5	1F6S	18	6	9	10	3	6	9	3	2	3

					Mechanical	Tests				Durability	Tests		Extras
		Test Meth	nod	ASTM C39 ^{1,11}	ASTM C496 ²	ASTM C512	ASTM C78	FM5-578⁵	NTBuild 492 ⁴	NTBuild 443 ⁷	ASTM ASTM C64 C1585	2 G109	
		Common Tes	t Name	Comp. Strength	Split Tension	Comp. Creep	Flex. Beam	Surface Resistivity	RMT	Bulk Diffusion	Absorption Voids Volume	G109	Extra Samples
		Sample S		4" x 8" Cylinders	4" x 8" Cylinders	6" x 12" Cylinders	4"x4"x12" Beams	4" x 8" Cylinders	4" x 8" Cylinders	4" x 8" Cylinders	4" x 8" Cylinders ¹³	11"x6"x4.5"	4" x 8" Cylinders
		TB1H4	2F	18	6	9	10	3	6	9	3	2	
		TB1H4-2	2F	0	0	6	0	0	0	0	0	2	
		TB2H4	2F7SF	18	6	9	10	3	6	9	3	2	
	0	TB3H4	2F2S	18	6	9	10	3	6	9	3	2	
	Class IV ⁰ AASH	TB3H4-2	2F2S	0	0	6	0	0	0	0	0	2	
	Å s	TB4H4	1F4S	18	6	9	10	3	6	9	3	2	
	IV ⁰ SHTO M-85	TB5H4	3F2S	18	6	9	10	3	6	9	3	2	
<u>,</u>	5	TB5H4-2	3F2S	0	0	6	0	0	0	0	0	2	
	Ś	TB6H4	2F4S	18	6	9	10	3	6	9	3	2	
Σį.	ģ	TB7H4	4F2S	18		9	10	3	6	9	3	2	
	- -	TB8H4	1F6S	18		9		3	6	9	3	2	
s T		TB1H5	2F	18	6	9	10	3	6	9	3	2	
NDS I	=	TB1H5-2	2F	0	0	6	0	0	0	0	0	2	
) j	TB2H5	2F7SF	18	6	9	10	3	6	9	3	2	
	Class	TB3H5	2F2S	18	6	9	10	3	6	9	3	2	
	ů v	TB4H5	1F4S	18	6	9	10	3	6	9	3	2	
	\leq	TB5H5	3F2S	18	6	9	10	3	6	9	3	2	
		TB6H5	2F4S	18	6	9	10	3	6	9	3	2	
		TB7H5	4F2S	18	6	9	10	3	6	9	3	2	
		TB8H5	1F6S	18	6	9	10	3	6	9	3	2	

Notes:

0. Class IV and V concrete with ASTM type I/II and AASHTO M-85 type II. Class IV and V concrete with 0.35 w/c and #89 stone. Class IV 658 lbs cementitious content. Class V with 752 lbs cementitious content. 1. C39 will be conducted at 7,14, 28, 56, 182 and 364 days.

2. ASTM C496 and Boyd-01 will be conducted at 28 and 364 days.

3. For BOYD-01, 3 of the 4"x8" cylinders will be partially submerged on sulfates on cycles and tested at 364 days.

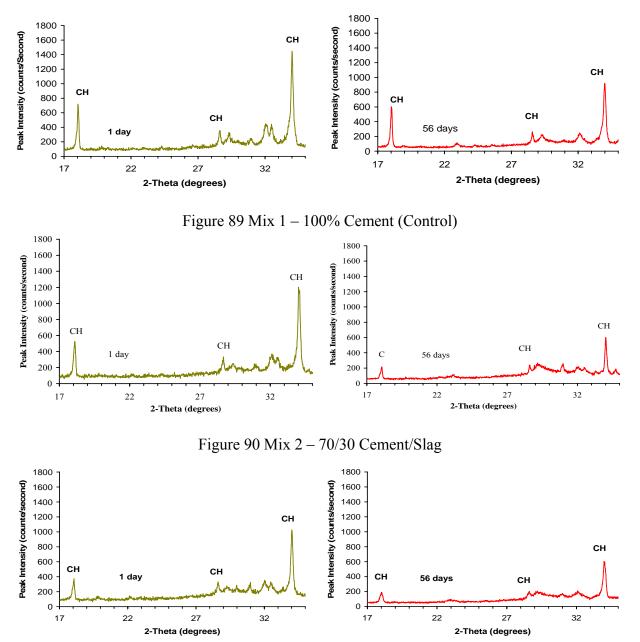
4. NTBuild 492 will be conducted at 56 and 91 days.

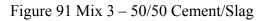
5. FM5-578 will be conducted at 1,3,7,14, 28, 56, 91, 182 and 364 days.

7. NTBuild 443 will be conducted at 91,182 and 364 days.

9. Macroscopy will be performed at the end of the procedure.

11. Modulus of Elasticity will be measured from C39 samples.


12. XRD states for Xray Diffraction and **SEM** for Scanning Electron Microscopy.


13. ASTM C1585 and ASTM C642 samples taken from different portions of the same 4"x8" cylinder.

Note: ASTM C232 Concrete Bleeding proposed on the original project matrix was eliminated due the results obtained on the first 4 mixes. No concrete bleeding was obtained on those mixes. The low w/c

APPENDIX B – XRD SPECTRUMS

PILOT STUDY

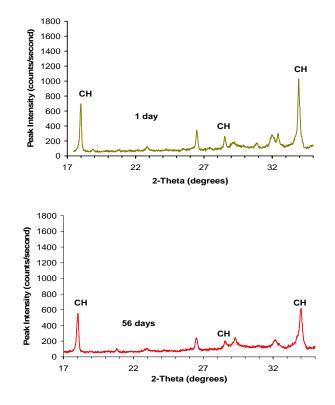


Figure 92 Mix 4 – 80/20 Cement/Fly As

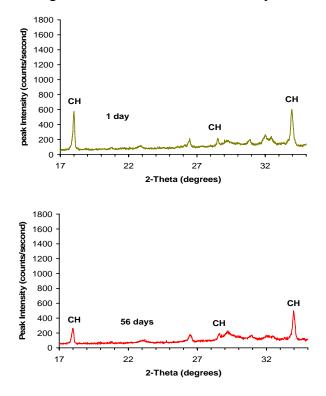


Figure 93 Mix 5 – 50/20/30 Cement / Fly Ash / Slag

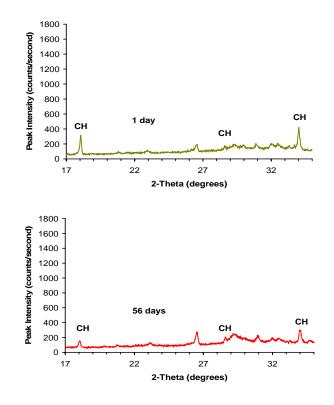


Figure 94 Mix 6 – 30/20/50 Cement / Fly Ash / Slag

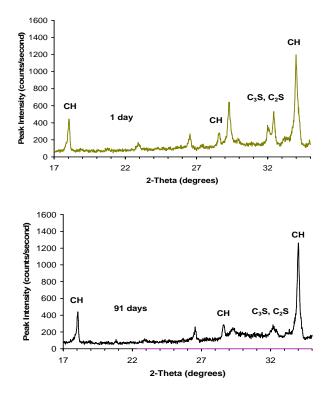
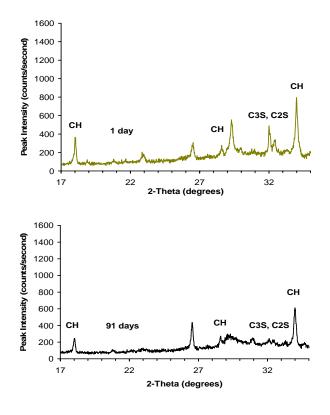




Figure 95 Mix 1 – 80/20 Cement / Fly Ash

Figure 96 Mix 3 - 60/20/20 Cement / Fly Ash / Slag

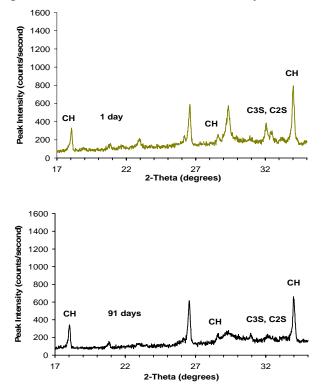


Figure 98 Mix 7 – 40/40/20 Cement / Fly Ash / Slag

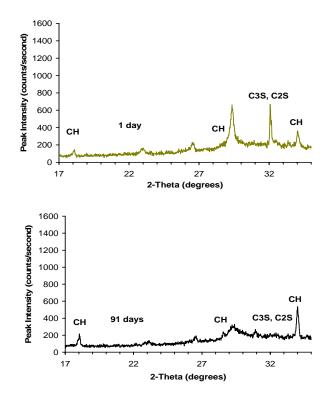
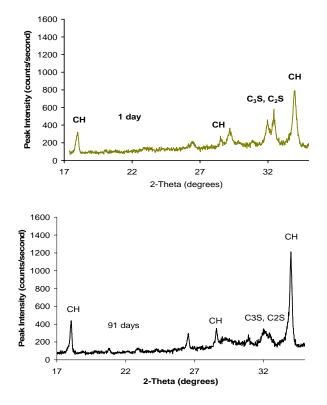
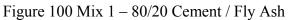




Figure 99 Mix 8 – 30/10/60 Cement / Fly Ash / Slag

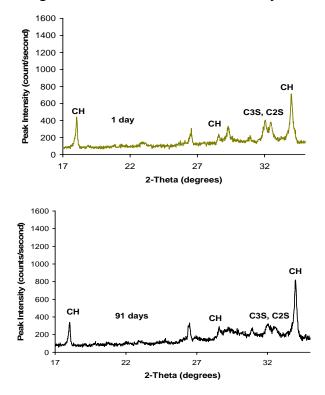


Figure 101 Mix 3 – 60/20/20 Cement / Fly Ash / Slag

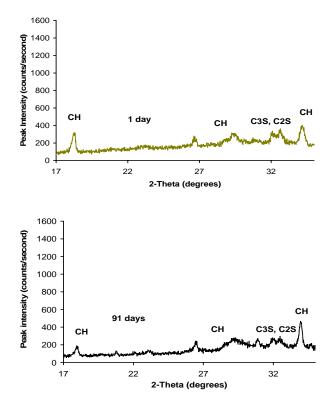


Figure 102 Mix 6 – 40/20/40 Cement / Fly Ash / Slag

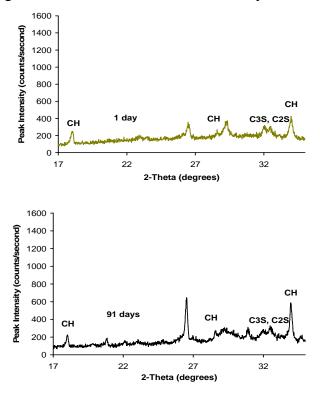


Figure 103 Mix 7 – 40/40/20 Cement / Fly Ash / Slag

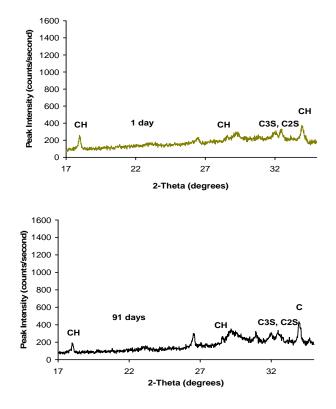
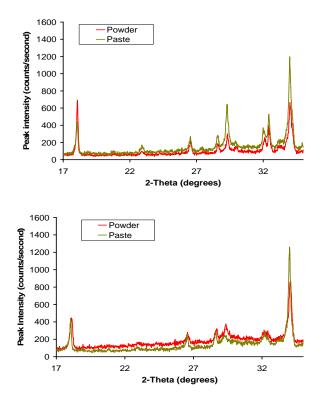
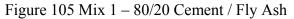




Figure 104 Mix 8 – 30/10/60 Cement / Fly Ash / Slag

ASTM CEMENT POWDER VS. HARDENED CEMENT – XRD SPECTRUMS FOR 1 AND 91 DAYS OF HYDRATION

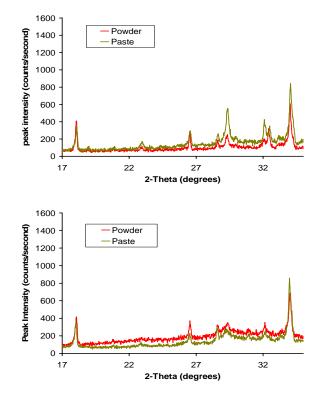


Figure 106 Mix 3 - 60/20/20 Cement / Fly Ash / Slag

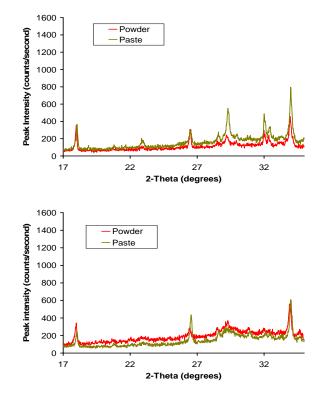


Figure 107 Mix 6 – 40/20/40 Cement / Fly Ash / Slag

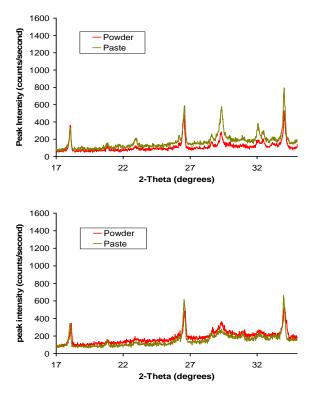


Figure 108 Mix 7 – 40/40/20 Cement / Fly Ash / Slag

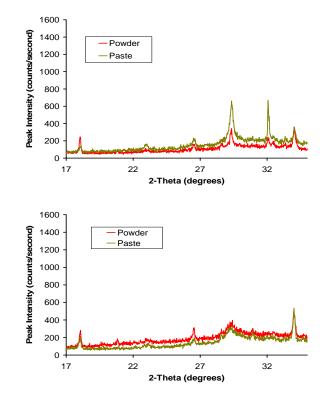


Figure 109 Mix 8 - 30/10/60 Cement / Fly Ash / Slag

CONCRETE SAMPLES – ASTM XRD SPECTRUMS

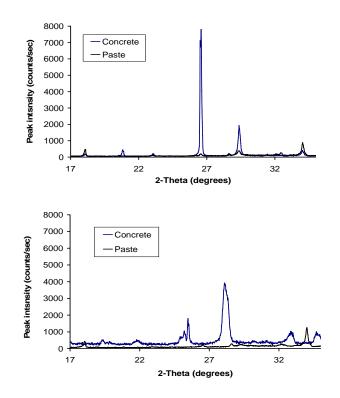
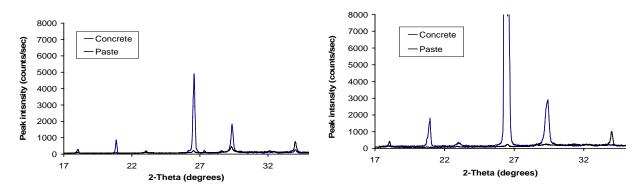
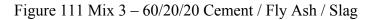




Figure 110 Mix 1 - 80/20 Cement / Fly Ash 28 and 91 days of hydration

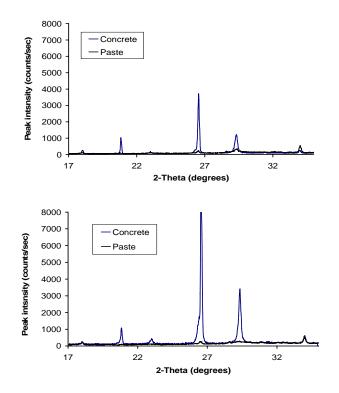


Figure 112 Mix 6 – 40/20/40 Cement / Fly Ash / Slag

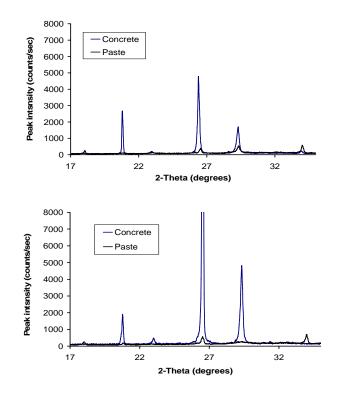


Figure 113 Mix 7 – 40/40/20 Cement / Fly Ash / Slag

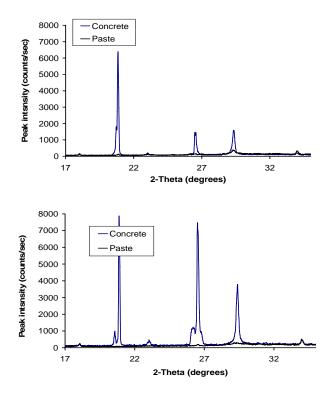


Figure 114 Mix 8 – 30/10/60 Cement / Fly Ash / Slag

APPENDIX C – COMPRESSIVE STRENGTH DATA

Mix TB1A4 Cast Date 11/1/2005

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)
			А	89400	7114		
	11/8/2005	7	В	90400	7194	91200	7257
			С	93800	7464		
			A	96300	7663		
	11/15/2005	14	В	98600	7846	96500	7679
			С	94600	7528		
		28	A	100500	7998		
	11/29/2005		В	105700	8411	103133	8207
TB1A4			С	103200	8212		
101/4		56	A	110900	8825	112067	8918
	12/27/2005		В	113000	8992		
			С	112300	8937		
			A	121830	9695		
	5/2/2006	182	В	112800	8976	117657	9363
			С	118340	9417		
		370	А	109445	8709		
	11/6/2006		В	110990	8832	113065	8997
			С	118761	9451		

 Mix
 TB1A4-2

 Cast Date
 3/1/2007

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)
			A	84600	6732		6863
3/8/2007	3/8/2007	7	В	84933	6759	86247	
			С	89209	7099		
	3/16/2007	15	A	92635	7372	90222	7180
TB1A4-2			В	88124	7013		
			С	89908	7155		
			A	93155	7413	92149	7333
	3/29/2007	28	В	91512	7282		
			С	91780	7304		

 Mix
 TB2A4

 Cast Date
 11/3/2005

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (Ib)	Ave. Stress (psi)
			А	91300	7265		
	11/10/2005	7	В	89900	7154	91067	7247
			С	92000	7321		
			А	105400	8387		
	11/17/2005	14	В	102000	8117	102800	8180
			С	101000	8037		
			А	117000	9311	116200	9247
	12/1/2005	28	В	118300	9414		
TB2A4			С	113300	9016		
1 DZA4			А	130700	10401		10199
	12/29/2005	56	В	127600	10154	128167	
			С	126200	10043		
			А	120940	9624		
	5/4/2006	182	В	120180	9564	118493	9429
			С	114360	9100		
			А	133794	10647		
	11/6/2006	368	В	111431	8867	124649	9919
			С	128721	10243		

Mix	TB2A4-2
Cast Date	3/1/2007

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)
			А	87210	6940		
3/8/2007	7	В	87876	6993	86022	6845	
			С	82980	6603		
	3/16/2007	15	А	92455	7357		7773
TB2A4-2			В	100577	8004	97685	
			С	100022	7959		
			А	107204	8531		8413
	3/29/2007	28	В	105976	8433	105717	
			С	103970	8274		

 Mix
 TB3A4

 Cast Date
 11/8/2005

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)
			A	87400	6955		
	11/15/2005	7	В	88800	7066	87800	6987
			С	87200	6939		
			A	106900	8507		
	11/22/2005	14	В	112100	8921	107067	8520
			С	102200	8133		
		5 28	А	109300	8698	107933	8589
	12/6/2005		В	107400	8547		
TB3A4			С	107100	8523		
1 DSA4		56	А	118100	9398	113133	9003
	1/3/2006		В	113300	9016		
			С	108000	8594		
			А	123000	9788		
	5/9/2006	182	В	126300	10051	123767	9849
			С	122000	9708		
			А	125656	9999		
	11/7/2006	364	В	123697	9843	124677	9921
			С	111702	8889		

 Mix
 TB3A4-2

 Cast Date
 3/1/2007

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)
			А	80141	6377		6297
	3/8/2007	7	В	78502	6247	79136	
TB3A4-2			С	78766	6268		
10384-2			А	100479	7996	101822	8103
	3/29/2007	28	В	101145	8049		
			С	103842	8263		

Mix TB4A4 Cast Date 11/10/2005

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)
			А	91300	7265		7342
	11/17/2005	7	В	90900	7234	92267	
			С	94600	7528		
			А	113700	9048		
	11/24/2005	14	В	110800	8817	112300	8937
			С	112400	8945		
	12/8/2005	28	А	108800	8658	113200	9008
			В	116500	9271		
TB4A4			С	114300	9096		
1 D474	1/5/2006	56	А	113800	9056	114500	9112
			В	114800	9136		
			С	114900	9143		
			А	127300	10130		
	5/11/2006	182	В	127100	10114	126567	10072
			С	125300	9971		
	11/9/2006	364	А	106828	8501	100752	
			В	125736	10006		8018
			С	69692	5546		

Mix TB4A4-2 Cast Date 3/1/2007

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)
			A	85002	6764		6504
	3/8/2007	7	В	77836	6194	81736	
TB4A4-2			С	82370	6555		
1 D4A4-2	3/29/2007	28	A	105215	8370	105666	8408
			В	102362	8146		
			С	109420	8707		

Mix TB5A4 Cast Date 11/15/2005

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)
			А	88300	7027		7146
	11/22/2005	7	В	90500	7202	89800	
			С	90600	7210		
			А	98700	7854		
	11/29/2005	14	В	62700	4990	95850	7628
			С	93000	7401		
	12/13/2005	28	А	104200	8292	105867	8424
			В	105400	8387		
TB5A4			С	108000	8594		
10074	1/10/2006	56	А	116000	9231	114900	9143
			В	111500	8873		
			С	117200	9326		
			А	127600	10154		
	5/16/2006	182	В	120000	9549	121733	9687
			С	117600	9358		
	11/14/2006	364	А	62629	4984	68991	7776
			В	65584	9496		
			С	72398	6056		

Mix TB5A4-2 Cast Date 3/1/2007

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)
		28	А	83781	6667	83912	6677
TB5A4-2	3/29/2007		В	84162	6697		
			С	83792	6668		

Mix TB6A4

Cast Date 2/21/2006

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)
			A	85600	6812		6929
	2/28/2006	7	В	85800	6828	87067	
			С	89800	7146		
			A	101450	8073		
	3/7/2006	14	В	107500	8555	102100	8125
			С	97350	7747		
	3/21/2006	28	A	103100	8204	106433	8470
			В	111800	8897		
TB6A4			С	104400	8308		
T DOA4	4/18/2006	56	A	119090	9477	116920	9304
			В	117160	9323		
			С	114510	9112		
			A	106918	8508		
	11/24/2006	276	В	128568	10231	118492	9429
			С	119989	9548		
	2/20/2007	364	А	112210	8929	117939	
			В	123932	9862		9385
			С	117674	9364		

* Test was not run

 Mix
 TB6A4-2

 Cast Date
 3/6/2007

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (Ib)	Ave. Stress (psi)
	TB6A4-2 4/3/2007	28	А	110753	8813	106668	8488
TB6A4-2			В	100484	7996		
			С	108766	8655		

 Mix
 TB7A4

 Cast Date
 2/21/2006

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)
			А	69000	5491		5289
	2/28/2006	7	В	70400	5602	66467	
			С	60000	4775		
			А	88380	7033		
	3/7/2006	14	В	87180	6938	86980	6922
			С	85380	6794		
	3/21/2006	28	A	101800	8101	99500	7918
			В	102000	8117		
TB7A4			С	94700	7536		
1 DI A	4/18/2006	56	A	108450	8630	110203	8770
			В	115120	9161		
			С	107040	8518		
			A	116594	9278		
	11/24/2006	276	В	96146	7651	107563	8697
			С	109949	9162		
		364	А	111734	8891	118266	
	2/20/2007		В	122277	9730		9411
			С	120788	9612		

* Test was not run

Mix TB5A4-2 Cast Date 3/1/2007

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)
		А	83781	6667			
TB5A4-2	TB5A4-2 3/29/2007	28	В	84162	6697	83912	6677
			С	83792	6668		

Mix TB6A4

Cast Date 2/21/2006

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)
			A	85600	6812		
	2/28/2006	7	В	85800	6828	87067	6929
			С	89800	7146		
			A	101450	8073		
	3/7/2006	14	В	107500	8555	102100	8125
			С	97350	7747		
			A	103100	8204		8470
	3/21/2006	06 28	В	111800	8897	106433	
TB6A4			С	104400	8308		
T DOA4		56	A	119090	9477	116920	9304
	4/18/2006		В	117160	9323		
			С	114510	9112		
			A	106918	8508		
	11/24/2006	276	В	128568	10231	118492	9429
			С	119989	9548		
		364	А	112210	8929		
	2/20/2007		В	123932	9862	117939	9385
			С	117674	9364		

* Test was not run

 Mix
 TB6A4-2

 Cast Date
 3/6/2007

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (Ib)	Ave. Stress (psi)
		28	А	110753	8813		8488
TB6A4-2	4/3/2007		В	100484	7996	106668	
			С	108766	8655		

 Mix
 TB7A4

 Cast Date
 2/21/2006

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)
			А	69000	5491		
	2/28/2006	7	В	70400	5602	66467	5289
			С	60000	4775		
			A	88380	7033	86980	
	3/7/2006	14	В	87180	6938		6922
			С	85380	6794		
			А	101800	8101	99500	7918
	3/21/2006	28	В	102000	8117		
TB7A4			С	94700	7536		
		56	A	108450	8630	110203	8770
	4/18/2006		В	115120	9161		
			С	107040	8518		
			A	116594	9278		
	11/24/2006	276	В	96146	7651	107563	8697
			С	109949	9162		
		364	А	111734	8891		
	2/20/2007		В	122277	9730	118266	9411
			С	120788	9612		

* Test was not run

Mix TB7A4-2 Cast Date 3/6/2007

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)
		А	86737	6902			
TB7A4-2	TB7A4-2 4/3/2007	28	В	88887	7073	89421	7116
			С	92639	7372		

TB8A4 Mix

Cast Date 3/30/2006

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)
			А	87430	6957		
	4/6/2006	7	В	89660	7135	86580	6890
			С	82650	6577		
			А	98340	7826		
	4/13/2006	14	В	107530	8557	102883	8187
			С	102780	8179		
			А	108320	8620		8628
	4/27/2006	28	В	106980	8513	108427	
TB8A4			С	109980	8752		
T DOA4		56	А	105700	8411	114867	9141
	5/25/2006		В	119500	9510		
			С	119400	9502		
			А	113127	9002		
	9/28/2006	182	В	121839	9696	118028	9392
			С	119117	9479		
	3/29/2007	364	А	120552	9593		
			В	121847	9696	120755	9609
			С	119865	9539		

Mix

TB8A4-2 Cast Date 3/6/2007

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)
			А	108059	8599		
TB8A4-2	4-2 4/3/2007	28	В	107946	8590	106398	8467
			С	103190	8212		

Mix TB1A5 Cast Date 3/30/2006

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)
			А	85670	6817		
	4/6/2006	7	В	88160	7016	88123	7013
			С	90540	7205		
			A	95690	7615	91767	
	4/13/2006	14	В	88820	7068		7303
			С	90790	7225		
			A	93680	7455	98597	7846
	4/27/2006	28	В	101940	8112		
TB1A5			С	100170	7971		
TBIAS		56	А	102600	8165	109900	8746
	5/25/2006		В	111400	8865		
			С	115700	9207		
			A	130593	10392		
	9/28/2006	182	В	125344	9975	126818	10092
			С	124516	9909		
			А	118993	9469		
	3/29/2007	364	В	124903	9939	122003	9708
			С	122113	9717		

Mix TB1A5-2 Cast Date 3/16/2007

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (Ib)	Ave. Stress (psi)
		А	105466	8393			
TB1A5-2	TB1A5-2 4/3/2007	28	В	101003	8038	103246	8216
			С	103269	8218		

Mix TB2A5

Cast Date 5/2/2006

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)
			А	87600	6971		
	5/9/2006	7	В	92900	7393	90400	7194
			С	90700	7218		
			A	100100	7966		
	5/16/2006	14	В	105500	8395	103267	8218
			С	104200	8292		
			A	113370	9022		8881
	5/30/2006	28	В	114390	9103	111603	
TB2A5			С	107050	8519		
1 DZAU	6/27/2006	56	A	*	*	*	*
			В	*	*		
			С	*	*		
			A	110456	8790		
	11/6/2006	188	В	108376	8624	108040	8598
			С	105289	8379		
	5/1/2007	364	А	119347	9497		
			В	138497	11021	123790	9851
			С	113525	9034		

* Test was not run

Mix TB3A5

Cast Date 5/2/2006

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)
			А	83500	6645		
	5/9/2006	7	В	90200	7178	88033	7006
			С	90400	7194		
			А	92000	7321	101300	
	5/16/2006	14	В	106300	8459		8061
			С	105600	8403		
			А	113970	9069	112067	8918
	5/30/2006	28	В	114040	9075		
TB3A5			С	108190	8609		
TBOAD		56	A	*	*	*	*
	6/27/2006		В	*	*		
			С	*	*		
			A	112432	8947		
	11/6/2006	188	В	110990	8832	114430	9106
			С	119867	9539		
	5/1/2007	364	А	126170	10040		
			В	131948	10500	130549	10390
			С	133528	10631		

* Test was not run

Mix	TB4A5
Cast Date	5/4/2006

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)
			А	92200	7337		
	5/11/2006	7	В	95100	7568	94100	7468
			С	95000	7500		
			А	108000	8594		
	5/18/2006	14	В	109100	8682	109633	8724
			С	111800	8897		
		6 28	А	111890	8904		8844
	6/1/2006		В	108040	8598	111130	
TB4A5			С	113460	9029		
1 D4A0		56	Α	115430	9186	112893	8984
	6/29/2006		В	116140	9242		
			С	107110	8523		
			А	91743	7301		
	11/6/2006	186	В	125461	9984	110210	8771
			С	94959	7557		
		3/2007 364	А	117061	9315	123756	9848
	5/3/2007		В	124497	9907		
			С	129710	10322		

Mix

Cast Date 5/4/2006

TB5A5

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)
			А	83000	6605		
	5/11/2006	7	В	80900	6438	82400	6557
			С	83300	6629		
			А	92200	7337		
	5/18/2006	14	В	97500	7759	95667	7613
			С	97300	7743		
			А	105190	8371		
	6/1/2006	28	В	96010	7640	101490	8076
TB5A5			С	103270	8217		
IDJAJ		56	А	108850	8662	106155	8447
	6/29/2006		В	107086	8521		
			С	102530	8159		
			А	84292	6708		
	11/6/2006	186	В	96276	7661	108828	8660
			С	121380	9659		
			А	123176	9802	124028	9870
	5/3/2007	364	В	124426	9901		
			С	124483	9906		

Mix Cast Date

TB6A5 5/9/2006

Identifier Max. Load (lb) | Max. Stress (psi) | Ave. Load (lb) | Ave. Stress (psi) Date Age (days) Sample 80900 6438 А 5/16/2006 7 В 81500 6486 82400 6557 С 84800 6748 105200 8372 А 5/23/2006 14 В 99600 7926 102433 8152 С 102500 8157 А 108460 8631 6/6/2006 28 В 116360 9260 109800 8738 С 104580 8322 TB6A5 81030 6448 А 7/5/2006 57 В 113630 9042 112560 8957 С 111490 8872 А 112094 8920 11/7/2006 182 В 119489 8509 117680 9031 С 121457 9665 А 113305 9017 5/8/2007 364 В 124432 9902 119511 9511 С 120795 9613

Mix	TB7A5
Cast Date	5/9/2006

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)
			А	58800	4679		
	5/16/2006	7	В	68600	5459	62900	5005
			С	61300	4878		
			А	86200	6860		
	5/23/2006	14	В	87300	6947	87400	6955
			С	88700	7059		
			А	93570	7446		
	6/6/2006	28	В	97876	7788	96732	7697
TB7A5			С	98750	7858		
I DI AS		57	A	109430	8708	105413	8388
	7/5/2006		В	102110	8126		
			С	104700	8331		
			A	73828	5875		
	11/7/2006	182	В	103916	8269	105183	8370
			С	106450	8471		
			А	115360	9180		
	5/8/2007	364	В	92006	7322	105141	8367
			С	108058	8599		

Mix TB8A5

Cast Date 5/11/2006

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)
			А	90700	7218		
	5/18/2006	7	В	85000	6764	87333	6950
			С	86300	6868		
			А	101700	8093		
	5/25/2006	14	В	105500	8395	103300	8220
			С	102700	8173		
			A	105470	8393		8654
	6/8/2006	28	В	112380	8943	108753	
TB8A5			С	108410	8627		
TDOAS		56	A	115390	9182	113099	9000
	7/6/2006		В	108786	8656		
			С	115120	9161		
			A	84564	6729		
	11/23/2006	196	В	107039	8518	104723	8334
			С	122567	9754		
			А	125510	9988		
	5/10/2007	364	В	122683	9763	123971	9865
			С	123720	9845		

 Mix
 TB1H4

 Cast Date
 5/11/2006

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)
			А	85300	6788		
	5/18/2006	7	В	85700	6820	85633	6815
			С	85900	6836		
			А	95100	7568		
	5/25/2006	14	В	95900	7631	96667	7692
			С	99000	7878		
			A	99066	7883		8291
	6/8/2006	28	В	109870	8743	104862	
TB1H4			С	105650	8248		
10114		56	А	104320	8302	108361	8623
	7/6/2006		В	112626	8962		
			С	108136	8604		
			А	102417	8150		
	11/9/2006	182	В	105675	8409	104046	8280
			С	47081	3747		
		007 364	А	123892	9859	121703	9685
	5/10/2007		В	130484	10384		
			С	110733	8812		

Mix	TB2H4
Cast Date	5/16/2006

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)
			А	90200	7178		
	5/23/2006	7	В	91900	7313	91300	7265
			С	91800	7305		
			А	107320	8540		
	5/30/2006	14	В	106890	8506	106627	8485
			С	105670	8409		
		29	А	111390	8864		8775
	6/14/2006		В	111020	8835	110263	
TB2H4			С	108380	8625		
102114		56	А	114660	9125	115860	9220
	7/11/2006		В	116820	9296		
			С	116100	9239		
			А	124920	9941		
	11/23/2006	191	В	121709	9685	123264	9809
			С	123162	9801		
		15/2007 364	А	114263	9063	122228	9717
	5/15/2007		В	127917	10179		
			С	124505	9908		

Mix

TB3H4 Cast Date 5/16/2006

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)
			А	87900	6995		
	5/23/2006	7	В	87500	6963	85967	6841
			С	82500	6565		
			А	100600	8006		
	5/30/2006	14	В	101440	8072	101937	8112
			С	103770	8258		
			А	104460	8313		
	6/14/2006	29	В	104700	8332	106023	8437 8969
TB3H4			С	108910	8667		
1 00114			А	111100	8841	112710	
	7/11/2006	56	В	111870	8902		
			С	115160	9164		
			А	88726	7061		
	11/14/2006	182	В	119331	9496	94720	7538
			С	76102	6056		
			А	124470	9905		
	5/15/2007	364	В	122370	9738	124841	9935
			С	127684	10161		

Mix TB4H4 Cast Date 5/18/2006

Max. Load (lb) Max. Stress (psi) Identifier Date Age (days) Sample Ave. Load (lb) Ave. Stress (psi) А 86900 6915 5/25/2006 7 87833 6989 6947 В 87300 С 89300 7106 109950 А 8750 6/1/2006 103220 8214 В 105170 8369 14 С 102340 8144 113346 А 9019 6/15/2006 В 110455 8789 28 107710 8571 С 110310 8778 TB4H4 106230 111640 8453 8884 A B 7/13/2006 56 105490 8394 С 98600 7846 А 102046 8121 104721 8333 11/23/2006 189 В 114899 9143 С 97219 7736 A B 116294 9254 5/17/2007 364 124793 118074 9396 9931 С 113136 9003

Mix	TB5H4
Cast Date	5/18/2006

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)
			А	75300	5992		
	5/25/2006	7	В	75700	6024	75233	5987
			С	74700	5944		
			А	97110	7728		
	6/1/2006	14	В	92960	7398	95093	7568
			С	95210	7577		
			А	99060	7883		8216 8709
	6/15/2006	28	В	105116	8365	103241	
TB5H4			С	105546	8399		
105114			А	109930	8748	109437	
	7/13/2006	56	В	111010	8834		
			С	107370	8545		
			А	94138	7491		
	11/24/2006	190	В	126656	10079	114716	9129
			С	123354	9816		
			А	120599	9597		
	5/17/2007	364	В	125174	9961	123642	9839
			С	125154	9959		

Mix TB6H4

Cast Date 5/23/2006

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)
			А	77150	6139		6380
	5/30/2006	7	В	81090	6453	80173	
			С	82280	6548		
			А	96720	7697		
	6/6/2006	14	В	104710	8333	89230	7101
			С	66260	5273		
			А	112846	8979		9009
	6/20/2006	006 28	В	115260	9172	113209	
TB6H4			С	111520	8875		
1 00114		56	А	113510	9032	113655	9044
	7/18/2006		В	120456	9585		
			С	107000	8515		
			A	126539	10070		
	11/23/2006	184	В	122664	9761	121070	9634
			С	114007	9072		
			А	126905	10099		
	5/24/2007	366	В	131878	10494	129392	10297
			С				

 Mix
 TB7H4

 Cast Date
 5/23/2006

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)	
			А	62780	4996			
	5/30/2006	7	В	62450	4970	62347	4962	
			С	61810	4919			
			А	73590	5856			
	6/6/2006	14	В	85640	6815	75427	6002	
			С	67050	5336			
			А	95466	7597		7298	
	6/20/2006	28	В	85610	6813	91712		
TB7H4			С	94060	7485			
10/114			А	102990	8196		7979	
	7/18/2006	56	В	92090	7328	100260		
			С	105700	8412			
			A	108308	8619			
	11/23/2006	184	В	119822	9535	107850	8582	
			С	95419	7593			
			А	123556	9832			
	5/23/2006	366	В	111556	8877	121040	9632	
			С	128008	10187			

Mix	TB8H4
Cast Date	5/25/2006

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)
			А	86820	6909		
	6/1/2006	7	В	81220	6463	83890	6676
			С	83630	6655		
			А	100356	7986		
	6/8/2006	14	В	98730	7857	98712	7855
			С	97050	7723		
			А	110060	8759		8795
	6/22/2006	28	В	108926	8667	110525	
TB8H4			С	112590	8960		
1 DOI 14			А	117830	9377		9157
	7/20/2006	56	В	108242	8613	115071	
			С	119140	9481		
			А	115139	9162		
	11/24/2006	183	В	89473	7120	107914	8581
			С	119129	9460		
			А	116146	9243		
	5/24/2007	364	В	120768	9610	120673	9603
			С	125104	9955		

Mix TB1H5 Cast Date 2/1/2007

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)	
			A	79727	6344			
	2/8/2007	7	В	78129	6217	80154	6378	
			С	82607	6574			
			А	94855	7548			
	2/15/2007	14	В	96813	7704	95853	7628	
			С	95890	7631			
			А	99234	7897		8031	
	3/1/2007	28	В	103259	8217	100924		
TB1H5			С	100280	7980			
TBIIIS			А	108395	8626		8526	
	3/29/2007	56	В	106074	8441	107144		
			С	106964	8512			
			А	94676	7534			
	8/2/2007	182	В	111915	8906	104454	8312	
			С	106770	8496			
			А	131030	10427			
	2/4/2008	368	В	135670	10796	136807	10887	
			С	143720	11437			

Mix TB2H5 Cast Date 2/1/2007

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)
			А	76429	6082		
	2/8/2007	7	В	78181	6221	76762	6108
			С	75677	6022		
			А	99892	7949		
	2/15/2007	14	В	97451	7755	98677	7852
			С	98689	7853		
			А	103816	8261		8382
	3/1/2007	28	В	104341	8303	105337	
TB2H5			С	107853	8583		
I DZI IJ			А	109664	8727		8644
	3/29/2007	56	В	100829	8024	108624	
			С	115380	9182		
			A	83159	6618		
	8/2/2007	182	В	85363	6793	87087	6930
			С	92740	7380		
			А	146880	10427		10887
	2/4/2008	368	В	139600	10796	140113	
			С	133860	11437		

Mix	TB6H5
Cast Date	2/8/2007

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)
			А	71557	5694		
	2/15/2007	7	В	73273	5831	72538	5772
			С	72785	5792		
			А	91851	7309		
	2/22/2007	14	В	91544	7285	92329	7347
			С	93591	7448		
			А	113451	9028		9303
	3/8/2007	28	В	112905	8985	116907	
TB6H5			С	124366	9897		
1 DOI 13			А	117179	9325		9394
	4/5/2007	56	В	119707	9526	118044	
			С	117246	9330	1	
			А	97785	7781		
	8/9/2007	182	В	73895	5883	90518	7205
			С	99874	7952		
			А	114110	9081		
	2/7/2008	364	В	116850	9299	114927	9146
			С	113820	9057		

Mix TB7H5 Cast Date 2/15/2007

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)	
			А	47451	3776			
	2/22/2007	7	В	49651	3951	48631	3870	
			С	48790	3883			
			А	(*)	(*)			
	3/1/2007	14	В	73029	5811	74560	5933	
			С	76090	6055			
			А	86321	6869		7208	
	3/16/2007	29	В	93915	7474	90578		
TB7H5			С	91498	7281			
1 B/113			А	104559	8321		8127	
	4/12/2007	56	В	102856	8185	102119		
			С	98943	7874			
			A	106954	8511			
	8/16/2007	182	В	101241	8056	105707	8412	
			С	108927	8668			
			А	110600	8803		8686	
	2/14/2008	364	В	111240	8852	109150		
			С	105610	8404			

(*) Compression computer crashed right after the test ended Mix TB8H5

Cast Date 2/15/2007

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)
			A	80306	6391		
	2/22/2007	7	В	80450	6402	80651	6418
			С	81198	6462		
			A	100845	8025		
	3/1/2007	14	В	102376	8147	103704	8253
			С	107891	8586		
			A	111063	8838		9032
	3/16/2007	29	В	110552	8797	113502	
TB8H5			С	118891	9461		
T DOI 15			A	117015	9312		9736
	4/12/2007	56	В	122958	9785	122340	
			С	127047	10110		
			А	114019	9073		
	8/16/2007	182	В	113140	9003	114214	9089
			С	115482	9190		
		14/2008 364	А	115120	9161		8760
	2/14/2008		В	101010	8038	109180	
			С	111410	9081		

APPENDIX D – TENSILE STRENGTH DATA

SPLIT CYLINDER TESTS

 Mix
 TB1A4

 Cast Date
 11/1/2005

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Tensile Strength (psi)	Ave. Load (lb)	Ave. Tens. Strength (psi)
			А	25050	495		
	11/29/2005	28	В	22790	450	23543	467
TB1A4			С	22790	455		
TDTA4			A	23000	455		
	10/31/2006	364	В	24130	475	24770	490
			С	27180	540		

 Mix
 TB2A4

 Cast Date
 11/3/2005

Identifier	Date	Age (days)	Sample	Max. Load (Ib)	Tensile Strength (psi)	Ave. Load (lb)	Ave. Tens. Strength (psi)	
			A	35780	710			
12/1/2005	28	В	35250	695	35393	700		
TB2A4	TDOAL		С	35150	695			
I DZA4	TB2A4		A	22320	445			
11/2/2006	364	В	27320	540	26843	533		
			С	30890	615			

 Mix
 TB3A4

 Cast Date
 11/8/2005

Identifier	Date	Age (days)	Sample	Max. Load (Ib)	Tensile Strength (psi)	Ave. Load (lb)	Ave. Tens. Strength (psi)
			A	25110	500	24490	487
	12/6/2005 TB3A4	28	В	24510	490		
TR2A4			С	23850	470		
10344			A	26630	530		
11/7/2006	364	В	20970	415	25823	512	
			С	29870	590		

Mix TB4A4 Cast Date 11/10/2005

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Tensile Strength (psi)	Ave. Load (lb)	Ave. Tens. Strength (psi)
			А	32270	640		645
TB4A4	12/8/2005	28	В	31520	625	32550	
			С	33860	670		
		364	Α	35540	705	35300	698
	11/9/2006		В	33720	665		
			C	36640	725		

 Mix
 TB5A4

 Cast Date
 11/15/2005

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Tensile Strength (psi)	Ave. Load (lb)	Ave. Tens. Strength (psi)
			A	28350	550		623
	12/13/2005	28	В	33600	660	31800	
TB5A4			С	33450	660		
TD3A4		364	А	34550	685		675
	11/14/2006		В	33480	665	33983	
			С	33920	675]	

Mix TB6A4 Cast Date 2/21/2006

Identifier	Date	Age (days)	Sample	Max. Load (Ib)	Tensile Strength (psi)	Ave. Load (lb)	Ave. Tens. Strength (psi)
			A	33560	665	33563	665
	3/21/2006	28	В	34100	675		
TB6A4			С	33030	655		
10044	2/20/2007	364	A(*)	28140	550		810
			В	48260	955	41220	
			С	47260	925		

 Mix
 TB7A4

 Cast Date
 2/21/2006

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Tensile Strength (psi)	Ave. Load (lb)	Ave. Tens. Strength (psi)
			A	33240	655		655
3/21	3/21/2006	28	В	34020	670	33323	
TB7A4			С	32710	640		
1D/A4		364	А	48510	955		898
	2/20/2007		В	44020	855	46140	
			С	45890	885		

Mix TB8A4 Cast Date 3/30/2006

Identifier	Date	Age (days)	Sample	Max. Load (Ib)	Tensile Strength (psi)	Ave. Load (lb)	Ave. Tens. Strength (psi)
			A	30480	605	32613	645
	4/28/2006	29	В	34180	675		
TB8A4			C	33180	655		
T BOA4		364	А	29440	580		690
	3/29/2007		В	37260	735	34993	
			С	38280	755		

Mix	TB1A5
Cast Date	3/30/2006

Identifier	Date	Age (days)	Sample	Max. Load (Ib)	Tensile Strength (psi)	Ave. Load (lb)	Ave. Tens. Strength (psi)
			A	23610	465	22860	452
4/28/2	4/28/2006	29	В	22220	440		
TB1A5			С	22750	450		
TETAS	3/29/2007	364	А	35860	710		787
			В	45390	885	40087	
			C	39010	765		

Mix TB2A5 Cast Date 5/2/2006

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Tensile Strength (psi)	Ave. Load (lb)	Ave. Tens. Strength (psi)
			A	33680	665		
5/30/2006 TB2A5 5/1/2007	28	В	32200	635	31410	620	
			С	28350	560		
			А	36530	720	38863	767
	5/1/2007	364	В	43700	860		
			С	36360	720		

 Mix
 TB3A5

 Cast Date
 5/2/2006

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Tensile Strength (psi)	Ave. Load (lb)	Ave. Tens. Strength (psi)
			A	31420	625	32220	637
ł	5/30/2006	28	В	32520	640		
TB3A5			С	32720	645		
TBSAS		364	A	29960	595		717
	5/1/2007		В	38170	750	36187	
			C	40430	805		

 Mix
 TB4A5

 Cast Date
 5/4/2006

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Tensile Strength (psi)	Ave. Load (lb)	Ave. Tens. Strength (psi)
			A	29053	575		
	6/1/2006	28	В	31780	630	32051	632
TB4A5			С	35320	690		
1 D4A3			A	28500	575		
	5/3/2007	364	В	32720	435	33760	602
			С	40060	795		

Mix TB5A5 Cast Date 5/4/2006

Identifier	Date	Age (days)	Sample	Max. Load (Ib)	Tensile Strength (psi)	Ave. Load (lb)	Ave. Tens. Strength (psi)
			A	29100	580	29850	588
TB5A5	6/1/2006	28	В	28050	550		
			С	32400	635		
		364	А	39120	780		682
	5/3/2007		В	27570	550	34150	
			С	35760	715		

 Mix
 TB6A5

 Cast Date
 5/9/2006

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Tensile Strength (psi)	Ave. Load (lb)	Ave. Tens. Strength (psi)
			А	32000	635	31330	620
6 TB6A5	6/6/2006	28	В	28820	570		
			С	33170	655		
TBOAS		364	А	32850	650		645
	5/8/2007		В	32780	650	32607	
			С	32190	635		

Mix TB7A5 Cast Date 5/9/2006

Identifier	Date	Age (days)	Sample	Max. Load (Ib)	Tensile Strength (psi)	Ave. Load (lb)	Ave. Tens. Strength (psi)
			A	29010	570		602
	6/6/2006	28	В	28090	550	30620	
TB7A5			С	34760	685		
TBIAS		364	A	37620	745	34937	692
	5/8/2007		В	35100	695		
			С	32090	635		

 Mix
 TB8A5

 Cast Date
 5/11/2006

Identifier Date Age (days) Sample Max. Load (lb) Tensile Strength (psi) Ave. Load (lb) Ave. Tens. Strength (psi) Α 31250 625 685 675 6/8/2006 28 33083 662 В 34410 C 33590 TB8A5 A B 28130 560 5/10/2007 364 29957 595 29860 595 31880 630 С

Identifier	Date	Age (days)	Sample	Max. Load (Ib)	Tensile Strength (psi)	Ave. Load (lb)	Ave. Tens. Strength (psi)
			A	25750	510		
	6/8/2006	28	В	26100	520	25343	503
TB1H4			С	24180	480		
IDIN4			Α	30750	605		
	5/10/2007	364	В	35210	700	33443	662
			С	34370	680		

 Mix
 TB2H4

 Cast Date
 5/16/2006

Identifier	Date	Age (days)	Sample	Max. Load (Ib)	Tensile Strength (psi)	Ave. Load (lb)	Ave. Tens. Strength (psi)
			A	28600	565		
	6/14/2006	29	В	37900	750	32400	642
TB2H4			С	30700	610		
I DZH4			Α	42560	845		
	5/15/2007	364	В	41140	805	40333	795
			С	37300	735		

 Mix
 TB3H4

 Cast Date
 5/16/2006

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Tensile Strength (psi)	Ave. Load (lb)	Ave. Tens. Strength (psi)
			А	27160	540		
	6/14/2006	29	В	23050	455	25647	508
TB3H4			С	26730	530		
10304			А	28600	565		
	5/15/2007	364	В	37290	740	35360	702
			С	40190	800		

 Mix
 TB4H4

 Cast Date
 5/18/2006

Identifier	Date	Age (days)	Sample	Max. Load (Ib)	Tensile Strength (psi)	Ave. Load (lb)	Ave. Tens. Strength (psi)
			А	27000	535		
	6/15/2006	28	В	34820	685	32600	643
TB4H4			С	35980	710		
1 D4 114			А	26060	520		
	5/17/2007	364	В	37040	735	34360	678
			С	39980	780		

Mix TB5H4

Cast Date 5/18/2006

Identifier	Date	Age (days)	Sample	Max. Load (Ib)	Tensile Strength (psi)	Ave. Load (lb)	Ave. Tens. Strength (psi)
			А	26510	525		
	6/15/2006	28	В	31530	620	28813	568
TB5H4	DELLA		С	28400	560		
100114			А	37600	740		
	5/17/2007	364	В	39380	785	37853	753
			С	36580	735		

TB6H4 Mix Cast Date 5/23/2006

Identifier	Date	Age (days)	Sample	Max. Load (Ib)	Tensile Strength (psi)	Ave. Load (Ib)	Ave. Tens. Strength (psi)
			А	34160	675		
	6/20/2006	28	В	36980	720	34137	668
TB6H4	4		С	31270	610		
1 DOI 14			А	31210	620		
	5/22/2007	364	В	35610	705	36973	738
			С	44100	890		

* Only 2 samples. One of the sample was missing. Mix TB7H4 Cast Date 5/23/2006

Date	Age (days)	Sample	Max. Load (lb)	Tensile Strength (psi)	Ave. Load (lb)	Ave. Tens. Strength (psi)
		А	23470	470		
6/20/2006	28	В	32450	645	29187	578
		С	31640	620		
		А	35620	710		780
5/22/2007	364	В	43240	855	39263	
		С	38930	775		
	6/20/2006	6/20/2006 28	6/20/2006 28 A C 5/22/2007 364 B	A 23470 6/20/2006 28 B 32450 C 31640 A 35620 5/22/2007 364 B 43240	A 23470 470 6/20/2006 28 B 32450 645 C 31640 620 710 5/22/2007 364 B 43240 855	A 23470 470 6/20/2006 28 B 32450 645 C 31640 620 5/22/2007 364 B 43240 855 39263

 Mix
 TB8H4

 Cast Date
 5/25/2006

Identifier	Date	Age (days)	Sample	Max. Load (Ib)	Tensile Strength (psi)	Ave. Load (lb)	Ave. Tens. Strength (psi)
			A	28640	565		
	6/22/2006	28	В	29430	580	27513	543
TB8H4			С	24470	485		
			Α	41740	830		
	5/24/2007	364	В	44130	875	42343	840
			C	41160	815		

Mix	TB1H5
Cast Date	2/1/2007

Identifier	Date	Age (days)	Sample	Max. Load (Ib)	Tensile Strength (psi)	Ave. Load (lb)	Ave. Tens. Strength (psi)
			А	31480	615		
	3/1/2007	28	В	34450	670	32913	643
TB1H5			С	32810	645		
тыпа			А	48760	960		
	1/31/2008	364	В	44040	870	45900	903
			С	44900	880		

Mix TB2H5 Cast Date 2/1/2007

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Tensile Strength (psi)	Ave. Load (lb)	Ave. Tens. Strength (psi)
			A	38540	760		
	3/1/2007	28	В	38420	760	38643	765
TB2H5			С	38970	775		
I DZHO			А	43480	855		
	1/31/2008	364	В	29540	585	45965	905
			С	48450	955		

 Mix
 TB3H5

 Cast Date
 2/6/2007

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Tensile Strength (psi)	Ave. Load (lb)	Ave. Tens. Strength (psi)
			А	33580	660		
	3/6/2007	28	В	36800	725	34853	685
TB3H5			С	34180	670		
10303			А	43920	860		
	2/5/2008	364	В	44090	865	40543	795
			С	33620	660		

 Mix
 TB4H5

 Cast Date
 2/6/2007

Identifier	Date	Age (days)	Sample	Max. Load (Ib)	Tensile Strength (psi)	Ave. Load (lb)	Ave. Tens. Strength (psi)
			A	33990	665		
	3/6/2007	28	В	32890	650	33980	670
TB4H5			С	35060	695		
104113			A	28110	550		
	2/5/2008	364	В	33850	660	30837	603
			С	30550	600		

 Mix
 TB5H5

 Cast Date
 2/8/2007

Identifier	Date	Age (days)	Sample	Max. Load (Ib)	Tensile Strength (psi)	Ave. Load (lb)	Ave. Tens. Strength (psi)
			A	31220	615		
	3/8/2007	28	В	35290	700	31283	618
TB5H5			С	27340	540		
гьэнэ			А	38460	755		
	2/7/2008	364	В	42390	835	40237	790
			С	39860	780		

 Mix
 TB6H5

 Cast Date
 2/8/2007

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Tensile Strength (psi)	Ave. Load (lb)	Ave. Tens. Strength (psi)
			А	34570	680		
	3/8/2007	28	В	33570	665	33740	667
TB6H5			С	33080	655		
1 DOI 13			А	38400	760		
	2/7/2008	364	В	44550	885	41623	818
			C	41920	810		

Mix TB7H5 Cast Date 2/15/2007

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Tensile Strength (psi)	Ave. Load (lb)	Ave. Tens. Strength (psi)	
			A	31660	620			
	3/15/2007	28	В	33370	660	31197	613	
TB7H5			С	28560	560			
I D7 H5		364	A	38150	750		828	
	2/14/2008		В	46580	915	42103		
			С	41580	820			

TB8H5 Mix Cast Date 2/15/2007

Identifier Date Age (days) Sample Max. Load (lb) Tensile Strength (psi) Ave. Load (lb) Ave. Tens. Strength (psi) Α 35280 690 3/15/2007 28 37327 732 В 40140 36560 790 715 C TB8H5 42810 840 Α 2/14/2008 364 В 43993 868 46740 930 42430 835 С

MODULUS OF RUPTURE

міх	Cast Date	Test Age	Test Date	Sample	Maximum Load (lbf)	MOR (psi)	Average MOR (psi)	Remarks
				А	6318	1096		Fract. at 3.7in from supp.
		29	3/30/2007	В	6279	1118	1175	Fract. at 3.8in from supp.
				С	5989	1310		Fracture Middle Third
				Α	5795	1268		Fracture Middle Third
TB1A4-2	3/1/2007	91	5/31/2007	В	5479	1199	1213	Fracture Middle Third
				С	5366	1174		Fracture Middle Third
				A	5559	1216	1	Fracture Middle Third
		364	2/28/2008	В	5801	1269	1240	Fracture Middle Third
				С	5640	1234		Fracture Middle Third
				A	6407	1141		Fract. at 3.8in from supp.
		29	3/30/2007	В	6277	1148	1178	Fract. at 3.9in from supp.
				С	5695	1246	1230	Fracture Middle Third
				Α	5529	1209		Fracture Middle Third
TB2A4-2	3/1/2007	91	5/31/2007	В	5763	1261		Fracture Middle Third
				С	5574	1219		Fracture Middle Third
				Α	6254	1368		Fracture Middle Third
		364	2/28/2008	В	6060	1326	1311	Fracture Middle Third
				С	5661	1238		Fracture Middle Third
				A	5467	1196		Fracture Middle Third
		29	3/30/2007	В	5704	1043	1142	Fract. at 3.9in from supp.
				С	5430	1188		Fracture Middle Third
				А	5436	1189		Fracture Middle Third
TB3A4-2	3/1/2007	91	5/31/2007	В	5243	1147	1194	Fracture Middle Third
				С	5702	1247		Fracture Middle Third
			2/28/2008	А	5787	1266		Fracture Middle Third
		364		В	5649	1236	1238	Fracture Middle Third
				С	5537	1211	1	Fracture Middle Third
				А	6261	1115		Fract. at 3.8n from supp.
		29	3/30/2007	В	5915	1294	1256	Fracture Middle Third
				С	6214	1359		Fracture Middle Third
				А	5693	1245	1230	Fracture Middle Third
TB4A4-2	3/1/2007	91	5/31/2007	В	5556	1215		Fracture Middle Third
				С	-	-		-
				А	6071	1328		Fracture Middle Third
		364	2/28/2008	В	5752	1258	1254	Fracture Middle Third
				С	5379	1177		Fracture Middle Third
				А	4905	1073		Fracture Middle Third
		29	3/30/2007	В	4988	1091	1058	Fracture Middle Third
				С	4613	1009	1	Fracture Middle Third
				А	5015	1097		Fracture Middle Third
TB5A4-2	3/1/2007	91	5/31/2007	В	4551	996	1069	Fracture Middle Third
				С	5090	1113	1	Fracture Middle Third
				А	5500	1203		Fracture Middle Third
		364	2/28/2008	В	5674	1241	1220	Fracture Middle Third
				С	5553	1215	1	Fracture Middle Third
				A	5762	1260	İ	Fracture Middle Third
		28	4/3/2007	В	5887	1076	1182	Fract. at 3.9in from supp.
		-		C	5522	1208	1 -	Fracture Middle Third
				A	5755	1259		Fracture Middle Third
TB6A4-2	3/6/2007	91	6/5/2007	В	5421	1186	1222	Fracture Middle Third
		-		C	-	-	1	-
				A	6261	1370		Fracture Middle Third
		364	3/4/2008	B	6131	1341	1306	Fracture Middle Third
		004	0, 1,2000	C	5514	1206	1	Fracture Middle Third
				U	5514	1200	I	

МІХ	Cast Date	Test Age	Test Date	Sample	Maximum Load (lbf)	MOR (psi)	Average MOR (psi)	Remarks
				А	4344	950		Fracture Middle Third
		28	4/3/2007	В	4990	1092	1009	Fracture Middle Third
				С	4508	986		Fracture Middle Third
				A	5328	1166		Fracture Middle Third
TB7A4-2	3/6/2007	91	6/5/2007	В	5627	1231	1152	Fracture Middle Third
				С	5800	1060		Fract. at 3.9in from supp.
				А	5977	1307		Fracture Middle Third
		364	3/4/2008	В	5839	1277	1308	Fracture Middle Third
				С	6123	1339		Fracture Middle Third
				A	5604	1226		Fracture Middle Third
		28	4/3/2007	В	5780	1264	1221	Fracture Middle Third
				С	5356	1172		Fracture Middle Third
				A	5502	1204		Fracture Middle Third
TB8A4-2	3/6/2007	91	6/5/2007	В	5589	1223	1229	Fracture Middle Third
				С	5761	1260		Fracture Middle Third
				A	6169	1349		Fracture Middle Third
		364	3/4/2008	В	6581	1440	1394	Fracture Middle Third
				С	6374	1394		Fracture Middle Third
				А	4901	1072		Fracture Middle Third
		28	4/3/2007	В	5218	1141	1074	Fracture Middle Third
				С	4607	1008		Fracture Middle Third
				А	5944	1300		Fracture Middle Third
TB1A5-2	3/6/2007	91	6/5/2007	В	5900	1291	1245	Fracture Middle Third
				С	5233	1145		Fracture Middle Third
				А	5629	1231		Fracture Middle Third
		364	3/4/2008	В	6002	1313	1294	Fracture Middle Third
				С	6113	1337	1	Fracture Middle Third
				А	4938	1080		Fracture Middle Third
		28	5/30/2006	В	4432	970	1025	Fracture Middle Third
				С	-	-	1	-
				А	5489	1201		Fracture Middle Third
TB2A5	5/2/2006	93	8/3/2006	В	5568	1218	1183	Fracture Middle Third
				С	5165	1130	1	Fracture Middle Third
				А	6313	1381		Fracture Middle Third
		365	5/2/2007	В	6182	1352	1334	Fracture Middle Third
				С	5799	1269		Fracture Middle Third
				A	4719	1032		Fracture Middle Third
		28	5/30/2006	В	4731	1035	1018	Fracture Middle Third
				C	4513	987		Fracture Middle Third
				A	5511	1206		Fracture Middle Third
TB3A5	5/2/2006	93	8/3/2006	В	5089	1113	1172	Fracture Middle Third
				C	5478	1198		Fracture Middle Third
				A	5721	1251		Fracture Middle Third
		365	5/2/2007	В	5901	1291	1302	Fracture Middle Third
				C	6231	1363		Fracture Middle Third
				A	5250	1148		Fracture Middle Third
		28	6/1/2006	B	5207	1139	1140	Fracture Middle Third
			3, 1, 2000	C	5183	1134	1	Fracture Middle Third
				A	5149	1126		Fracture Middle Third
TB4A5	5/4/2006	91	8/3/2006	B	5413	1120	1140	Fracture Middle Third
	0, -, 2000		0,0,2000	C	5070	1109		Fracture Middle Third
				A	6247	1367		Fracture Middle Third
		365	5/4/2007	B	7075	1548	1451	Fracture Middle Third
		000	51712001	C	6582	1440	1 1 1 1	Fracture Middle Third
				U	0002	1440		

МІХ	Cast Date	Test Age	Test Date	Sample	Maximum Load (lbf)	MOR (psi)	Average MOR (psi)	Remarks
				А	4567	999		Fracture Middle Third
		28	6/1/2006	В	4853	1062	996	Fracture Middle Third
				С	5074	928		Fract. at 3.9in from supp.
				A	4736	1036		Fracture Middle Third
TB5A5	5/4/2006	91	8/3/2006	В	4796	1049	1043	Fracture Middle Third
				С	-	-		-
				A	6342	1387		Fracture Middle Third
		365	5/4/2007	В	6502	1422	1393	Fracture Middle Third
				С	6265	1370		Fracture Middle Third
				A	5042	1103		Fracture Middle Third
		28	6/6/2006	В	5280	1155	1144	Fracture Middle Third
				С	5371	1175		Fracture Middle Third
				A	5650	1236		Fracture Middle Third
TB6A5	5/9/2006	92	8/9/2006	В	5411	1184	1239	Fracture Middle Third
				С	5925	1296		Fracture Middle Third
				A	6574	1438		Fracture Middle Third
		364	5/8/2007	В	5849	1279	1347	Fracture Middle Third
				С	6054	1324		Fracture Middle Third
				A	4864	1064		Fracture Middle Third
		28	6/6/2006	В	4725	1034	1050	Fracture Middle Third
				С	4808	1052		Fracture Middle Third
				A	5112	1118		Fracture Middle Third
TB7A5	5/9/2006	92	8/9/2006	В	4832	1057	1101	Fracture Middle Third
				С	5150	1127		Fracture Middle Third
				A	6335	1386		Fracture Middle Third
		364	5/8/2007	В	6087	1332	1377	Fracture Middle Third
				С	6467	1415		Fracture Middle Third
				A	5663	1239		Fracture Middle Third
		56	7/6/2006	В	5614	1228	1225	Fracture Middle Third
				С	5528	1209	1	Fracture Middle Third
				А	5306	1161		Fracture Middle Third
TB8A5	5/11/2006	92	8/11/2006	В	5429	1188	1196	Fracture Middle Third
				С	5663	1239	1	Fracture Middle Third
				А	6391	1398		Fracture Middle Third
		364	5/10/2007	В	7330	1603	1461	Fracture Middle Third
				С	6321	1383		Fracture Middle Third
				A	5097	1115		Fracture Middle Third
		56	7/6/2006	В	5194	1136	1128	Fracture Middle Third
				С	5178	1133	1	Fracture Middle Third
				A	5512	1206		Fracture Middle Third
TB1H4	5/11/2006	92	8/11/2006	В	5264	1152	1161	Fracture Middle Third
				C	5143	1125		Fracture Middle Third
				A	6619	1448		Fracture Middle Third
		364	5/10/2007	В	6180	1352	1366	Fracture Middle Third
			0,10,2001	C	5939	1299		Fracture Middle Third
				A	5410	1183		Fracture Middle Third
		56	7/11/2006	B	5495	1202	1197	Fracture Middle Third
				C	5513	1202	1	Fracture Middle Third
				A	5407	1183		Fracture Middle Third
TB2H4	5/16/2006	91	8/15/2006	B	5320	1164	1171	Fracture Middle Third
	5,10,2000		3, 10, 2000	C	5337	1167	1	Fracture Middle Third
				A	5864	1283		Fracture Middle Third
		364	5/15/2007	B	6659	1263	1424	Fracture Middle Third
		004	5/15/2007	C	7007		1727	Fracture Middle Third
				U	1001	1533		

МІХ	Cast Date	Test Age	Test Date	Sample	Maximum Load (lbf)	MOR (psi)	Average MOR (psi)	Remarks
				А	5323	1164		Fracture Middle Third
		56	7/11/2006	В	5706	1248	1166	Fracture Middle Third
				С	4959	1085		Fracture Middle Third
				Α	5825	1274		Fracture Middle Third
TB3H4	5/16/2006	91	8/15/2006	В	5430	1188	1257	Fracture Middle Third
				С	5986	1309		Fracture Middle Third
				A	6987	1528		Fracture Middle Third
		364	5/15/2007	В	6957	1522	1527	Fracture Middle Third
				С	6994	1530		Fracture Middle Third
				A	5485	1200		Fracture Middle Third
		57	7/14/2006	В	5486	1200	1198	Fracture Middle Third
				С	5453	1193		Fracture Middle Third
				A	5981	1308		Fracture Middle Third
TB4H4	5/18/2006	91	8/17/2006	В	5638	1233	1274	Fracture Middle Third
				С	5847	1279		Fracture Middle Third
				A	6617	1447		Fracture Middle Third
		364	5/17/2007	В	6753	1477	1471	Fracture Middle Third
				С	6807	1489		Fracture Middle Third
				A	5357	1172		Fracture Middle Third
		57	7/14/2006	В	5264	1152	1171	Fracture Middle Third
				С	5436	1189		Fracture Middle Third
				Α	5447	1192		Fracture Middle Third
TB5H4	5/18/2006	91	8/17/2006	В	5870	1284	1269	Fracture Middle Third
				С	6080	1330		Fracture Middle Third
				Α	7431	1626		Fracture Middle Third
		364	64 5/17/2007	В	6750	1477	1534	Fracture Middle Third
				С	6852	1499		Fracture Middle Third
				Α	5350	1170		Fracture Middle Third
		28	6/20/2006	В	5182	1134	1160	Fracture Middle Third
				С	5375	1176		Fracture Middle Third
				А	5491	1201		Fracture Middle Third
TB6H4	5/23/2006	91	8/22/2006	В	4943	1081	1125	Fracture Middle Third
				С	4988	1091		Fracture Middle Third
				А	7060	1544		Fracture Middle Third
		364	5/22/2007	В	7597	1662	1557	Fracture Middle Third
				С	6702	1466		Fracture Middle Third
				А	4376	957		Fracture Middle Third
		29	6/21/2006	В	4922	900	937	Fract. at 3.9in from supp.
				С	4358	953	1	Fracture Middle Third
				A	4123	902		Fracture Middle Third
TB7H4	5/23/2006	57	7/19/2006	В	4598	1006	946	Fracture Middle Third
				С	4246	929	1	Fracture Middle Third
				A	5084	1112		Fracture Middle Third
		91	8/22/2006	В	5276	1154	1071	Fracture Middle Third
				С	4324	946	1	Fracture Middle Third
				A	5174	1132		Fracture Middle Third
		28	6/22/2006	В	5159	1129	1131	Fracture Middle Third
		-		C	5174	1132	1	Fracture Middle Third
				A	4926	1078		Fracture Middle Third
TB8H4	5/25/2006	57	7/21/2006	В	4773	1044	1076	Fracture Middle Third
				C	5054	1106	1	Fracture Middle Third
				A	*	*		*
		364	5/24/2007	B	*	*	*	*
		.		C	*	*	1	*

МІХ	Cast Date	Test Age	Test Date	Sample	Maximum Load (Ibf)	MOR (psi)	Average MOR (psi)	Remarks
				А	6862	1501		Fracture Middle Third
		29	3/2/2007	В	6351	1389	1383	Fracture Middle Third
				С	5753	1258		Fracture Middle Third
				A	6304	1379		Fracture Middle Third
TB1H5	2/1/2007	92	5/4/2007	В	6806	1489	1448	Fracture Middle Third
				С	6750	1477		Fracture Middle Third
				А	5979	1308		Fracture Middle Third
		364	1/31/2008	В	6099	1334	1288	Fracture Middle Third
				С	5580	1221		Fracture Middle Third
				Α	5937	1299		Fracture Middle Third
		29	3/2/2007	В	5959	1304	1322	Fracture Middle Third
				С	6233	1363	1	Fracture Middle Third
				A	6863	1501		Fracture Middle Third
TB2H5	2/1/2007	92	5/4/2007	В	6673	1460	1481	Fracture Middle Third
				C	-	-		-
				A	5430	1188		Fracture Middle Third
		364	1/31/2008	B	5922	1295	1242	Fracture Middle Third
		004	1/01/2000	C	-	- 1200	1272	Fracture Middle Third
				A	6291	1376		Fracture Middle Third
		28	3/6/2007	B	5963	1304	1300	Fracture Middle Third
		20	3/0/2007	C			1300	
				-	6846	1219		Fract. at 3.8in from supp.
TDALLE	0/0/0007	04	E /0/0007	A	6720	1470	40.40	Fracture Middle Third
TB3H5	2/6/2007	91	5/8/2007	B	5496	1202	1346	Fracture Middle Third
				С	6248	1367		Fracture Middle Third
				A	6083	1331		Fracture Middle Third
		364	2/5/2008	В	-	-	1281	Fracture Middle Third
				С	5625	1230		Fracture Middle Third
				A	7117	1557		Fracture Middle Third
		28	3/6/2007	В	6338	1386	1428	Fracture Middle Third
				С	7328	1340		Fract. at 3.9in from supp.
				A	6440	1409		Fracture Middle Third
TB4H5	2/6/2007	91	5/8/2007	В	6907	1511	1452	Fracture Middle Third
				С	6560	1435		Fracture Middle Third
				А	5364	1173		Fracture Middle Third
		364	2/5/2008	В	4143	906	975	Fracture Middle Third
				С	3862	845		Fracture Middle Third
				А	6828	1494		Fracture Middle Third
		29	3/9/2007	В	7035	1253	1394	Fract. at 3.8in from supp.
		-		C	6563	1436		Fracture Middle Third
				A	6858	1500		Fracture Middle Third
TB5H5	2/8/2007	91	5/10/2007	B	6366	1393	1411	Fracture Middle Third
		0.	0, 10, 2001	C	6133	1342	1	Fracture Middle Third
				A	4929	1078		Fracture Middle Third
		364	2/7/2008	B	5216	1141	1143	Fracture Middle Third
		007	2,1,2000	C	5533	1210		Fracture Middle Third
		20	3/9/2007	A	5901	1291	1005	Fracture Middle Third
		29	3/9/2007	B	6105	1335	1285	Fracture Middle Third
				C	5611	1227		Fracture Middle Third
TDOUS	0/0/0007	0.1	E/40/0007	A	6018	1316	4070	Fracture Middle Third
TB6H5	2/8/2007	91	5/10/2007	B	6497	1421	1379	Fracture Middle Third
				С	6399	1400		Fracture Middle Third
				A	5286	1156		Fracture Middle Third
		364	2/7/2008	В	4664	1020	1132	Fracture Middle Third
				С	5568	1218		Fracture Middle Third

МІХ	Cast Date	Test Age	Test Date	Sample	Maximum Load (lbf)	MOR (psi)	Average MOR (psi)	Remarks
				A	3845	841		Fracture Middle Third
		56	4/12/2007	В	4678	1023	937	Fracture Middle Third
				С	4321	945		Fracture Middle Third
				A	4431	969		Fracture Middle Third
TB7H5	2/15/2007	91	5/17/2007	В	5583	1221	1124	Fracture Middle Third
				С	5396	1180		Fracture Middle Third
				A	5708	1249		Fracture Middle Third
		364	2/14/2008	В	5706	1248	1252	Fracture Middle Third
				С	5752	1258		Fracture Middle Third
				А	5279	1155	1186	Fracture Middle Third
		56	4/12/2007	В	6121	1090		Fract. at 3.8in from supp.
				С	6006	1314		Fracture Middle Third
				A	4685	1025		Fracture Middle Third
TB8H5	2/15/2007	2007 91	5/17/2007	В	5960	1304	1192	Fracture Middle Third
	364			С	5705	1248		Fracture Middle Third
				А	5616	1229		Fracture Middle Third
		364	2/14/2008	В	5696	1246	1225	Fracture Middle Third
				С	5486	1200		Fracture Middle Third

APPENDIX E – MODULUS OF ELASTICITY DATA

 Mix
 TB1A4

 Cast Date
 11/1/2005

Date	Age (days)	Sample	Run 1	Run 2	Run 3	E-Mod (ksi)	Ave. E-Mod (ksi)
		А	3000	3087	3075	3054	
11/29/2005	28	В	3028	3055	3055	3046	3050
12/27/2005 56		А	3546	3617	3667	3610	
	56	В	2900	2966	2900	2922	3266
		А	3600	3600	3600	3600	
5/2/2006	182	В	3000	3000	3000	3000	3300
	370	А	5190	5334	5336	5287	5584
11/6/2006		В	5846	5898	5901	5882	

Mix TB1A4-2

Mix

Cast Date 3/1/2007

TB2A4

Cast Date 11/3/2005

Date	Age (days)	Sample	Run 1	Run 2	Run 3	E-Mod (ksi)	Ave. E-Mod (ksi)
	А	5950	5100	5100	5383		
3/8/2007	7	В	4150	4950	4750	4617	5000
		А	4900	4900	4950	4917	4758
3/16/2007	15	В	4450	4650	4700	4600	
		А	6350	6300	6150	6267	
3/29/2007	28	В	5100	4950	5000	5017	5642

Date	Age (days)	Sample	Run 1	Run 2	Run 3	E-Mod (ksi)	Ave. E-Mod (ksi)
		А	4031	4404	4541	4325	
12/1/2005	28	В	3107	3174	3175	3152	3739
	12/29/2005 56	А	3604	3659	3644	3636	
12/29/2005		В	3200	3417	3438	3352	3494
		А	4992	5077	5039	5036	
5/4/2006	182	В	4575	4676	4822	4691	4864
		А	5513	5830	5366	5570	
11/6/2006	368	В	5537	5566	5552	5552	5561

Mix TB2A4-2 Cast Date 3/1/2007

Date	Age (days)	Sample	Run 1	Run 2	Run 3	E-Mod (ksi)	Ave. E-Mod (ksi)
		А	4650	4800	4800	4750	
3/8/2007	7	В	4700	4850	4850	4800	4775
		А	4250	4400	4400	4350	
3/16/2007	15	В	5150	5400	5400	5317	4833
3/29/2007		А	4650	4700	4700	4683	5000
	28	В	5250	5350	5350	5317	

Mix	TB3A4
Cast Date	11/8/2005

Date	Age (days)	Sample	Run 1	Run 2	Run 3	E-Mod (ksi)	Ave. E-Mod (ksi)
	11/22/2005 14	Α	3000	3060	3119	3060	
11/22/2005		В	3050	3052	3074	3059	3059
		А	3123	3160	3159	3147	
12/6/2005	28	В	3234	3171	3180	3195	3171
		Α	3010	3106	3140	3085	3079
1/3/2006	56	В	3000	3109	3110	3073	
		Α	4760	4875	-	4818	
5/9/2006	182	В	4908	4828	4700	4812	4815
		Α	5462	5490	-	5476	
11/7/2006	364	В	5577	5750	5800	5709	5593

TB3A4-2 3/1/2007 Mix Cast Date

Date	Age (days)	Sample	Run 1	Run 2	Run 3	E-Mod (ksi)	Ave. E-Mod (ksi)
		А	4550	4600	4600	4583	
3/8/2007	7	В	4400	4500	4500	4467	4525
3/29/2007	28	А	4850	5000	5000	4950	
		В	5050	5150	5150	5117	5033

TB4A4 Mix Cast

ast Date	11/10/200

Date	Age (days)	Sample	Run 1	Run 2	Run 3	E-Mod (ksi)	Ave. E-Mod (ksi)	
		Α	3300	3350	3350	3333		
11/24/2005	14	24/2005 14 B	В	3700	3900	3950	3850	3592
		С						
		А	3151	3245	3249	3215		
12/8/2005	28	В	3252	3232	3052	3179	3197	
		Α	4919	5044	5066	5010	5010	
5/11/2006	182	В	-	-	-			
11/9/2006		А	5433	5823	5648	5635		
	364	В	6712	6008	-	6360	5997	
N4:								

 Mix
 TB4A4-2

 Cast Date
 3/1/2007

Date	Age (days)	Sample	Run 1	Run 2	Run 3	E-Mod (ksi)	Ave. E-Mod (ksi)
		Α	4600	4750	4750	4700	
3/29/2007	28	В	4600	4750	4800	4717	4708

 Mix
 TB5A4

 Cast Date
 11/15/2005

Date	Age (days)	Sample	Run 1	Run 2	Run 3	E-Mod (ksi)	Ave. E-Mod (ksi)
		А	2920	2917	2910	2916	
11/22/2005 7	В	-	-	-		2916	
		А	3015	3069	3045	3043	
11/29/2005	14	В	2901	2517	2882	2767	2905
12/13/2005 28	А	3012	3061	3085	3053		
	28	В	3202	3195	3122	3173	3113
		А	3638	3611	3659	3636	3371
1/10/2006	56	В	2994	3152	3172	3106	
		А	3419	3582	3645	3549	
5/16/2006 182	182	В	3370	3444	3423	3412	3481
		А	-	-	-		
11/14/2006	364	В	5433	5523	5648	5535	5535

Mix TB5A4-2 Cast Date 3/1/2007

Date	Age (days)	Sample	Run 1	Run 2	Run 3	E-Mod (ksi)	Ave. E-Mod (ksi)
	29/2007 28	А	4850	4950	4950	4917	
3/29/2007		В	5000	4950	5000	4983	4950

Mix

TB6A4 Cast Date 2/21/2006

Date	Age (days)	Sample	Run 1	Run 2	Run 3	E-Mod (ksi)	Ave. E-Mod (ksi)
		А	4529	4634	4647	4603	
2/28/2006	7	В	-	-	-		4603
		Α	4299	4362	4273	4311	
3/7/2006	14	В	4710	4670	4452	4611	4461
		А	4545	4764	4830	4713	
3/21/2006	28	В	4473	4681	4679	4611	4662
		А	5042	5020	4937	5000	4949
4/18/2006	56	В	4794	4917	4983	4898	
		Α	5703	5666	5664	5678	
11/24/2006	276	В	5474	5782	5778	5678	5678
	364	А	5823	6113	6124	6020	
2/20/2007		В	5465	5404	5558	5476	5748

Mix

TB6A4-2 Cast Date 3/6/2007

Date	Age (days)	Sample	Run 1	Run 2	Run 3	E-Mod (ksi)	Ave. E-Mod (ksi)
	28	А	5300	5300	5300	5300	5125
4/3/2007		В	4850	5000	5000	4950	

Mix TB7A4 Cast Date 2/21/2006

Date	Age (days)	Sample	Run 1	Run 2	Run 3	E-Mod (ksi)	Ave. E-Mod (ksi)
		Α	3730	3697	3780	3736	
2/28/2006	7	В	3600	3823	3837	3753	3745
		А	4135	4044	4304	4161	
3/7/2006	14	В	4261	4333	4390	4328	4245
		Α	4504	4633	4639	4592	
3/21/2006	28	В	4374	4510	4503	4462	4527
		A	4970	4965	4775	4903	4607
4/18/2006	56	В	4144	4422	4363	4310	
		Α	5377	5640	5610	5542	
11/24/2006	276	В	5782	5916	5925	5874	5708
	364	Α	5387	5587	5587	5520	5305
2/20/2007		В	5172	5076	5020	5089	

Mix	TB7A4-2
Cast Date	3/6/2007

Date	Age (days)	Sample	Run 1	Run 2	Run 3	E-Mod (ksi)	Ave. E-Mod (ksi)
		Α	4450	4550	4550	4517	
4/3/2007	28	В	4350	4450	4450	4417	4467

Mix TB8A4 Cast Date 3/30/2006

Date	Age (days)	Sample	Run 1	Run 2	Run 3	E-Mod (ksi)	Ave. E-Mod (ksi)
		Α	4328	4405	4439	4391	
4/6/2006	7	В	4435	4225	4419	4360	4375
		А	4252	4365	4450	4356	
4/13/2006	14	В	4456	4223	4476	4385	4370
		Α	5225	5088	5068	5127	5080
4/27/2006	28	В	4919	5095	5084	5033	
		Α	5404	5322	-	5363	
9/28/2006	182	В	5819	5872	5904	5865	5614
	364	А	5100	5100	5100	5100	
3/29/2007		В	5600	5700	5750	5683	5392

Mix TB8A4-2 Cast Date 3/6/2007

Date	Age (days)	Sample	Run 1	Run 2	Run 3	E-Mod (ksi)	Ave. E-Mod (ksi)
		А	5150	5300	5300	5250	5225
4/3/2007	28	В	5200	5200	5200	5200	

Mix TB1A5 Cast Date 3/30/2006

Date	Age (days)	Sample	Run 1	Run 2	Run 3	E-Mod (ksi)	Ave. E-Mod (ksi)
		Α	4242	4405	4379	4342	
4/6/2006	7	В	4378	4403	4410	4397	4370
		А	-	-	-		
4/13/2006	14	В	4194	4378	4405	4326	4326
		Α	4476	4684	4707	4622	
4/27/2006	28	В	4242	4456	4507	4402	4512
		Α	-	-	-	-	5518
5/25/2006	56	В	5758	5278	-	5518	
		Α	5474			5474	
9/28/2006	182	В	5547	5579	5580	5569	5521
	364	Α	5255	5252	5283	5263	5349
3/29/2007		В	5451	5419	-	5435	

Mix TB1A5-2

Cast Date 3/16/2007

Date	Age (days)	Sample	Run 1	Run 2	Run 3	E-Mod (ksi)	Ave. E-Mod (ksi)
	28	А	4750	4850	4850	4817	
4/3/2007		В	4900	5100	5150	5050	4933

Mix	TB2A5
Cast Date	5/2/2006

Date	Age (days)	Sample	Run 1	Run 2	Run 3	E-Mod (ksi)	Ave. E-Mod (ksi)
		Α	3000	3000	3000	3000	
5/9/2006	7	В	2700	2800	2800	2767	2883
		Α	3260	3011	3397	3223	
5/16/2006	14	В	2771	2969	2953	2898	3060
		Α	3251	3116	3198	3188	3225
5/30/2006	28	В	3096	3322	3368	3262	
		А	5381	5850	5492	5574	
11/6/2006	188	В	5272	5483	5481	5412	5493
		A	5150	5400	5437	5329	
5/1/2007	364	В	5265	5276	5436	5326	5327

 Mix
 TB3A5

 Cast Date
 5/2/2006

Date	Age (days)	Sample	Run 1	Run 2	Run 3	E-Mod (ksi)	Ave. E-Mod (ksi)
		Α	3000	3050	3050	3033	
5/9/2006	7	В	3050	3100	3100	3083	3058
		А	2767	2868	2760	2798	
5/16/2006	14	В	2940	2986	2969	2965	2882
		Α	3419	3463	3252	3378	3276
5/30/2006	28	В	3224	3214	3081	3173	
		Α	5649	5725	5746	5707	
11/6/2006	188	В	5609	5651	5654	5638	5672
		Α	5608	5315	-	5462	
5/1/2007	364	В	5563	5325	-	5444	5453

 Mix
 TB4A5

 Cast Date
 5/4/2006

Date	Age (days)	Sample	Run 1	Run 2	Run 3	E-Mod (ksi)	Ave. E-Mod (ksi)
		Α	3050	3150	3150	3117	
5/11/2006	7	В	3050	3200	3300	3183	3150
		Α	3070	3180	3150	3133	
5/18/2006	14	В	3250	3400	3400	3350	3242
		Α	3550	3650	3650	3617	3567
6/1/2006	28	В	3450	3550	3550	3517	
		Α	5647	5748	5666	5687	
11/6/2006	186	В	5702	5612	5652	5655	5671
5/3/2007	364	Α	5850	5850	5700	5800	5725
		В	5650	5650	5650	5650	

 Mix
 TB5A5

 Cast Date
 5/4/2006

Date	Age (days)	Sample	Run 1	Run 2	Run 3	E-Mod (ksi)	Ave. E-Mod (ksi)
		А	3912	4100	4114	4042	
5/11/2006	7	В	3968	4123	4123	4071	4057
		Α	2767	2917	3007	2897	
5/18/2006	14	В	2798	3004	3006	2936	2917
		Α	4243	4512	4481	4412	4299
6/1/2006	28	В	4144	4185	4226	4185	
		Α	4997	5192	5267	5152	
11/6/2006	186	В	4971	5037	5126	5045	5098
5/3/2007	364	Α	4950	5000	5050	5000	5033
		В	5000	5100	5100	5067	

Mix	TB6A5
Cast Date	5/9/2006

Date	Age (days)	Sample	Run 1	Run 2	Run 3	E-Mod (ksi)	Ave. E-Mod (ksi)
		А	2688	2728	2824	2747	
5/16/2006	7	В	2729	2865	2925	2840	2793
		А	3246	3334	3268	3283	
5/23/2006	14	В	3237	3334	3325	3299	3291
		А	3125	3286	3326	3246	
6/6/2006	28	В	3301	3292	3291	3295	3270
		Α	4272	4421	4421	4371	4164
7/5/2006	57	В	4031	3931	3906	3956	
		Α	5147	5332	5373	5284	
11/7/2006	182	В	5706	5581	5591	5626	5455
5/8/2007	364	Α	5500	5550	5550	5533	5467
		В	5450	5350	5400	5400	

 Mix
 TB7A5

 Cast Date
 5/9/2006

Date	Age (days)	Sample	Run 1	Run 2	Run 3	E-Mod (ksi)	Ave. E-Mod (ksi)
		А	2176	2287	2300	2254	
5/16/2006	7	В	2201	2305	2327	2278	2266
		Α	3190	3190	3126	3169	
5/23/2006	14	В	2709	2899	2859	2822	2996
		Α	2847	2999	2972	2939	
6/6/2006	28	В	2709	2899	2859	2822	2881
		Α	3686	3784	3816	3762	3731
7/5/2006	57	В	3625	3714	3761	3700	
		A	5772	6008	5999	5926	
11/7/2006	182	В	5859	5767	5795	5807	5867
5/8/2007	364	А	-	-	-	-	5800
		В	5800	5800	5800	5800	

 Mix
 TB8A5

 Cast Date
 5/11/2006

Date	Age (days)	Sample	Run 1	Run 2	Run 3	E-Mod (ksi)	Ave. E-Mod (ksi)
		A	2863	2956	2965	2928	. ,
5/18/2006	7	В	2504	2521	2782	2602	2765
		А	2907	3078	3076	3020	
5/25/2006	14	В	2979	3225	3277	3160	3090
		А	2963	3120	3169	3084	
6/8/2006	28	В	-	-	-	-	3084
		А	4123	4156	4066	4115	4214
7/6/2006	56	В	4345	4289	4303	4312	
		А	5235	5137	5232	5201	
11/23/2006	196	В	-	5000	4693	4847	5024
	364	A	5450	5550	5550	5517	5292
5/10/2007		В	5000	5100	5100	5067	

Mix	TB1H4
Cast Date	5/11/2006

Date	Age (days)	Sample	Run 1	Run 2	Run 3	E-Mod (ksi)	Ave. E-Mod (ksi)
	7	Α	2783	2917	2919	2873	
5/18/2006		В	2603	2821	2861	2762	2817
		А	3440	3448	3491	3460	
5/25/2006	14	В	-	-	-	-	3460
		Α	3406	3494	3511	3470	
6/8/2006	28	В	2928	3130	3185	3081	3276
		A	3881	4095	4134	4037	4200
7/6/2006	56	В	4584	4225	4282	4364	
		A	5906	5828	5838	5857	
11/9/2006	182	В	5010	5232	-	5121	5489
5/10/2007	364	Α	5700	5850	5800	5783	5650
		В	5450	5550	5550	5517	

 Mix
 TB2H4

 Cast Date
 5/16/2006

Date	Age (days)	Sample	Run 1	Run 2	Run 3	E-Mod (ksi)	Ave. E-Mod (ksi)
		А	2656	2817	3068	2847	
5/23/2006	7	В	*	*	*		2847
		Α	3297	3381	3386	3355	
5/30/2006	14	В	3206	3370	3381	3319	3337
		A	*	*	*		
6/14/2006	29	В	*	*	*		*
		A	3955	3983	4032	3990	3901
7/11/2006	56	В	3626	3704	4106	3812	
		A	5254	5376	5429	5353	
11/23/2006	191	В	5381	5396	5432	5403	5378
	364	Α	6050	6050	6000	6033	5750
5/15/2007		В	5400	5500	5500	5467	

 Mix
 TB3H4

 Cast Date
 5/16/2006

Date	Age (days)	Sample	Run 1	Run 2	Run 3	E-Mod (ksi)	Ave. E-Mod (ksi)
		А	2984	3010	3067	3020	
5/23/2006	7	В	2308	2380	2412	2367	2694
		А	3137	3245	3296	3226	
5/30/2006	14	В	3343	3413	3365	3374	3300
	56	А	3777	3861	3982	3873	4238
7/11/2006		В	4650	4561	4598	4603	
		Α	5029	5469	5518	5339	
11/14/2006	182	В	5973	5723	5611	5769	5554
5/15/2007	364	А	5343	5486	5454	5428	5381
		В	*	5321	5347	5334	

Cast Date 5/18/2006

Date	Age (days)	Sample	Run 1	Run 2	Run 3	E-Mod (ksi)	Ave. E-Mod (ksi)
		Α	2976	2999	3283	3086	
5/25/2006	7	В	*	*	*		3086
		А	4351	4522	4555	4476	
6/1/2006	14	В	4366	4550	4612	4509	4493
		А	3965	4225	4312	4167	4215
7/13/2006	56	В	3853	4473	4459	4262	
		Α	5104	5050	5000	5051	
11/23/2006	189	В					5051
	364	Α	5633	5658	5738	5676	5524
5/17/2007		В	5200	5460	5455	5372	

Mix TB5H4

Cast Date 5/18/2006

Date	Age (days)	Sample	Run 1	Run 2	Run 3	E-Mod (ksi)	Ave. E-Mod (ksi)
		Α	2976	2999	3283	3086	
5/25/2006	7	В	-	1866	1752	1809	2448
		Α	4375	4419	4419	4404	
6/1/2006	14	В	4486	4653	4666	4602	4503
	56	Α	3949	4180	4235	4121	3946
7/13/2006		В	3243	4018	4053	3771	
		А	5919	5924	5923	5922	
11/24/2006	190	В	5420	5606	5622	5549	5736
5/17/2007	364	Α	5229	5483	5467	5393	5437
		В	5276	5592	5575	5481	

 Mix
 TB6H4

 Cast Date
 5/23/2006

Date	Age (days)	Sample	Run 1	Run 2	Run 3	E-Mod (ksi)	Ave. E-Mod (ksi)
		А	3162	3158	3135	3152	
5/30/2006	7	В	3061	3061	3097	3073	3112
		А	2919	3259	3293	3157	
6/6/2006	14	В	2884	2960	2957	2934	3045
		А	4072	3893	3931	3965	
7/18/2006	56	В	4260	4317	4307	4295	4130
		А	5984	5984	5896	5955	
11/23/2006	184	В	5984	5984	5984	5984	5969
		Α	6000	6100	6100	6067	
5/24/2007	366	В	6100	6150	6150	6133	6100

 Mix
 TB7H4

 Cast Date
 5/23/2006

Date	Age (days)	Sample	Run 1	Run 2	Run 3	E-Mod (ksi)	Ave. E-Mod (ksi)
		А	2714	2761	2783	2753	
5/30/2006	7	В	2908	2722	2845	2825	2789
		А	2652	2784	2793	2743	
6/6/2006	14	В	2984	2684	2961	2876	2810
		А	3855	4104	4104	4021	
7/18/2006	56	В	3455	3945	3859	3753	3887
		А	4300	4250	4250	4267	
11/23/2006	184	В	-	-	-		4267
		Α	4900	5150	5150	5067	
5/24/2007	366	В	5850	5950	5950	5917	5492

Mix	TB8H4
Cast Date	5/25/2006

Date	Age (days)	Sample	Run 1	Run 2	Run 3	E-Mod (ksi)	Ave. E-Mod (ksi)
		А	4480	4427	4753	4553	
6/1/2006	7	В	4166	4228	4322	4239	4396
		Α	3958	4228	4322	4169	
6/8/2006	14	В	3374	3456	3376	3402	3786
		А	4045	4045	4113	4068	4253
7/20/2006	56	В	4330	4493	4493	4439	
		Α	5270	5270	5100	5213	
11/24/2006	183	В	5185	5185	5185	5185	5199
		Α	4900	5000	5050	4983	
5/24/2007	364	В	5550	5550	5550	5550	5267

 Mix
 TB1H5

 Cast Date
 2/1/2007

Date	Age (days)	Sample	Run 1	Run 2	Run 3	E-Mod (ksi)	Ave. E-Mod (ksi)
		А	4050	4200	4250	4167	
2/8/2007	7	В	3900	4050	4000	3983	4075
		А	4600	4800	4850	4750	
2/15/2007	14	В	4250	4350	4400	4333	4542
		А	4450	4550	4600	4533	
3/1/2007	28	В	4500	4600	4600	4567	4550
		А	4700	4750	4750	4733	4725
3/29/2007	56	В	4650	4750	4750	4717	
		А	5750	5700	5700	5717	
8/2/2007	182	В	5450	5500	5500	5483	5600
1/31/2008		А	5750	5800	5900	5817	
	364	В	5450	5600	5500	5517	5667

Cast Date 2/1/2007

Date	Age (days)	Sample	Run 1	Run 2	Run 3	E-Mod (ksi)	Ave. E-Mod (ksi)
		А	4400	4500	4500	4467	
2/8/2007	7	В	3850	3950	3950	3917	4192
		А	4100	4250	4300	4217	
2/15/2007	14	В	4650	4800	4850	4767	4492
		А	4700	4750	4800	4750	
3/1/2007	28	В	5050	5150	5150	5117	4933
		А	4100	4100	4100	4100	
3/29/2007	56	В	5450	5450	5450	5450	4775
		А	5350	5400	5150	5300	
8/2/2007	182	В	5350	5500	5500	5450	5375
1/31/2008	364	А	5500	5700	5700	5633	5550
		В	5450	5450	5500	5467	

Mix	TB3H5
Cast Date	2/6/2007

Date	Age (days)	Sample	Run 1	Run 2	Run 3	E-Mod (ksi)	Ave. E-Mod (ksi)
		Α	3650	3750	3750	3717	
2/13/2007	7	В	4050	4150	4150	4117	3917
		А	4500	4650	4650	4600	
2/20/2007	14	В	4600	4800	4750	4717	4658
		А	5200	5250	5100	5183	
3/6/2007	28	В	5250	5150	5150	5183	5183
		А	5050	5200	5200	5150	
4/3/2007	56	В	4550	4700	4750	4667	4908
		А	4850	5050	4900	4933	
8/7/2007	182	В	4850	4950	4900	4900	4917
		А	5500	5650	5650	5600	5708
2/5/2008	364	В	5750	5850	5850	5817	

 Mix
 TB4H5

 Cast Date
 2/6/2007

Date	Age (days)	Sample	Run 1	Run 2	Run 3	E-Mod (ksi)	Ave. E-Mod (ksi)
		А	4200	4300	4300	4267	
2/13/2007	7	В	3750	3950	4000	3900	4083
		Α	4700	4800	4800	4767	
2/20/2007	14	В	4750	4750	4750	4750	4758
		А	5600	5500	5350	5483	
3/6/2007	28	В	5650	5750	5750	5717	5600
		А	5400	5650	5600	5550	
4/3/2007	56	В	5500	5700	5700	5633	5592
		Α	4950	5050	5000	5000	
8/7/2007	182	В	4750	4950	4950	4883	4942
		Α	5500	5500	5650	5550	5742
2/5/2008	364	В	5900	5950	5950	5933	

 Mix
 TB5H5

 Cast Date
 2/8/2007

t Date	2/8/2007

Date	Age (days)	Sample	Run 1	Run 2	Run 3	E-Mod (ksi)	Ave. E-Mod (ksi)
		А	4500	4600	4550	4550	
2/15/2007	7	В	4150	4200	4200	4183	4367
		А	3950	4100	4150	4067	
2/22/2007	14	В	4200	4400	4400	4333	4200
		А	5250	5700	5750	5567	
3/8/2007	28	В	5100	4950	5050	5033	5300
		А	4600	4750	4750	4700	
4/5/2007	56	В	4700	4800	4800	4767	4733
		А	5000	4650	4450	4700	
8/9/2007	182	В	5850	5750	5800	5800	5250
		А	4750	4850	4850	4817	
2/7/2008	364	В	4700	4650	4700	4683	4750

Mix	TB6H5
Cast Date	2/8/2007

Date	Age (days)	Sample	Run 1	Run 2	Run 3	E-Mod (ksi)	Ave. E-Mod (ksi)
		Α	4250	4350	4350	4317	
2/15/2007	7	В	4200	4300	4300	4267	4292
		А	4700	4750	4750	4733	
2/22/2007	14	В	4650	4850	4950	4817	4775
		А	5200	5300	5300	5267	
3/8/2007	28	В	5100	5350	*	5225	5246
		Α	4550	4700	4700	4650	
4/5/2007	56	В	4650	4800	4800	4750	4700
		Α	5000	4900	4950	4950	
8/9/2007	182	В	4950	4900	4850	4900	4925
		Α	4900	4950	5000	4950	
2/7/2008	364	В	4850	4950	4950	4917	4933

Mix TB7H5 Cast Da דו

ate	2/15/2007

Date	Age (days)	Sample	Run 1	Run 2	Run 3	E-Mod (ksi)	Ave. E-Mod (ksi)
		Α	3250	3300	3300	3283	
2/22/2007	7	В	3550	3650	3600	3600	3442
		A	3600	3850	3850	3767	
3/1/2007	14	В	3850	4000	3950	3933	3850
		Α	4600	4750	4750	4700	
3/16/2007	29	В	4900	5050	5050	5000	4850
		Α	4600	4700	4750	4683	
4/12/2007	56	В	4750	4800	4850	4800	4742
		Α	4800	4650	4650	4700	
8/16/2007	182	В	4600	4600	4650	4617	4658
		Α	4500	4600	4600	4567	
2/14/2008	364	В	4600	4750	4750	4700	4633

Mix TB8H5 Cast Date 2/15/2007

Age (days) Sample Run 1 Run 2 Run 3 E-Mod (ksi) Ave. E-Mod (ksi) Date А 2/22/2007 В А 3/1/2007 В А 3/16/2007 В А 4/12/2007 В А 8/16/2007 В А 2/14/2008 В

APPENDIX F – CREEP DATA

Mix TB1A4 Cast Date 11/1/2005

Identifier	Date	Age (days)	Sample	Max. Load (Ib)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)	% of Ave Load	Frame Load (lb)	Creep Coefficent
			А	238500	8435					1
TB1A4	11/29/2005	28	В	236600	8368	236933	8380	30	71080	4.359
			С	235700	8336					

 Mix
 TB2A4

 Cast Date
 11/3/2005

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)	% of Ave Load	Frame Load (lb)	Creep Coefficent
			A	246900	8732					
TB2A4	12/1/2005	28	В	255700	9044	249200	8814	30	74760	0.370
			С	245000	8665					

 Mix
 TB3A4

 Cast Date
 11/8/2005

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)	% of Ave Load	Frame Load (lb)	Creep Coefficent
			A	255600	9040					
TB3A4	12/7/2005	29	В	260300	9206	255100	9022	30	76530	0.613
			С	249400	8821					

Mix TB4A4 Cast Date 11/10/2005

Identifier	Date	Age (days)	Sample	Max. Load (Ib)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)	% of Ave Load	Frame Load (Ib)	Creep Coefficent
			А	279400	9882					
TB4A4	12/8/2005	28	В	284600	10066	278133	9837	30	83440	0.412
			С	270400	9563					

Mix TB5A4 Cast Date 11/15/2005

Identifier	Date	Age (days)	Sample	Max. Load (Ib)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)	% of Ave Load	Frame Load (Ib)	Creep Coefficent
			A	247000	8736					
TB5A4	12/15/2005	30	В	254000	8983	248400	8785	30	74520	0.225
			С	244200	8637					

 Mix
 TB6A4

 Cast Date
 2/21/2006

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)	% of Ave Load	Frame Load (Ib)	Creep Coefficent
			A	241700	8548					
TB6A4	3/21/2006	28	В	245000	8665	242593	8593	40	97037	0.676
			С	241080	8565					

Mix TB7A4 Cast Date 2/21/2006

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)	% of Ave Load	Frame Load (Ib)	Creep Coefficent
			A	219000	7746					
TB7A4	3/21/2006	28	В	220000	7781	215933	7637	40	86373	0.997
			С	208800	7385					

Mix TB8A4 Cast Date 3/30/2006

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)	% of Ave Load	Frame Load (lb)	Creep Coefficent
			A	257730	9115					
TB8A4	4/27/2006	28	В	245740	8691	252400	8927	40	100960	4.587
			С	253730	8974					

Mix	TB1A5
Cast Date	3/30/2006

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)	% of Ave Load	Frame Load (lb)	Creep Coefficent
			А	233160	8246					
TB1A5	4/27/2006	28	В	222840	7881	234193	8283	40	93677	1.232
			С	246580	8721					

Mix TB2A5 Cast Date 5/2/2006

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)	% of Ave Load	Frame Load (lb)	Creep Coefficent
			А	245730	8691					
TB2A5	5/30/2006	28	В	247010	8736	247547	8755	40	99019	-
			С	249900	8838					

 Mix
 TB3A5

 Cast Date
 5/2/2006

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)	% of Ave Load	Frame Load (lb)	Creep Coefficent
			А	260580	9216					
TB3A5	5/30/2006	28	В	264860	9368	260423	9211	40	104169	-
			С	255830	9048					

 Mix
 TB4A5

 Cast Date
 5/4/2006

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)	% of Ave Load	Frame Load (lb)	Creep Coefficent
			A	280650	9926					
TB4A5	6/1/2006	28	В	285950	10113	281003	9938	40	112401	0.537
			С	276410	9776					

 Mix
 TB5A5

 Cast Date
 5/4/2006

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)	% of Ave Load	Frame Load (Ib)	Creep Coefficent
			А	252900	8945					
TB5A5	6/1/2006	28	В	241800	8552	244487	8647	40	97795	0.862
			С	238760	8444					

Mix TB6A5 Cast Date 5/9/2006

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)	% of Ave Load	Frame Load (lb)	Creep Coefficent
			А	234010	8276					
TB6A5	6/6/2006	28	В	251170	8883	245593	8686	40	98237	-
			C	251600	8899					

Mix TB7A5 Cast Date 5/9/2006

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)	% of Ave Load	Frame Load (Ib)	Creep Coefficent
			А	213130	7538					
TB7A5	6/6/2006	28	В	229370	8112	223230	7895	40	89292	-
			С	227190	8035					

Mix TB8A5 Cast Date 5/11/2006

Identifier	Date	Age (days)	Sample	Max. Load (Ib)	Max. Stress (psi)	Ave. Load (Ib)	Ave. Stress (psi)	% of Ave Load	Frame Load (lb)	Creep Coefficent
			А	226440	8009					
TB8A5	6/8/2006	28	В	233220	8248	238037	8419	40	95215	-
			С	254450	8999					

Mix TB7H4 Cast Date 5/23/2006 TB7H4

ousi	Duito	0/20/2000	

L	Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)	% of Ave Load	Frame Load (Ib)	Creep Coefficent
ſ				A	214740	7595					
	TB7H4	6/23/2006	31	В	216070	7642	220523	7799	30	66157	1.128
				С	230760	8161					

Mix TB8H4 Cast Date 5/25/2006

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)	% of Ave Load	Frame Load (lb)	Creep Coefficent
			A	238280	8428					
TB8H4	6/25/2006	31	В	250450	8858	246743	8727	30	74023	2.634
			С	251500	8895					

Mix	TB2H4
Cast Date	5/16/2006

Identifier	Date	Age (days)	Sample	Max. Load (Ib)	Max. Stress (psi)	Ave. Load (Ib)	Ave. Stress (psi)	% of Ave Load	Frame Load (lb)	Creep Coefficent
			А	253710	8973					
TB2H4	6/14/2006	29	В	247860	8766	247940	8769	40	99176	0.596
			С	242250	8568					

231333

8207 8424

7914

232040 238190

223770

245340

241270 247040

259240

251080

256860

Δ

В

С

Α

В

С

28

31

Age (days) Sample

Max. Load (Ib) | Max. Stress (psi) | Ave. Load (Ib) | Ave. Stress (psi) | % of Ave Load | Frame Load (Ib) | Creep Coefficent

8182

40

92533

-

1.128

1.347

Mix TB3H4-2 Cast Date 3/8/2007

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)	% of Ave Load	Frame Load (Ib)	Creep Coefficent
		A	255540	9038						
TB3H4-2	4/5/2007	28	В	198100	7006	237690	8407	40	95076	-
			С	259430	9176					

14 Cast Date 5/18/2006

TB5H4-2 3/8/2007

Date

4/5/2007

TB6H4

5/23/2006

Date

6/23/2006

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)	% of Ave Load	Frame Load (Ib)	Creep Coefficent
			A	256720	9080					
TB4H4	6/18/2006	31	В	259770	9187	256227	9062	40	102491	2.817
			С	252190	8919					

8677

8533 8737

9190

8880

9084

Age (days) Sample Max. Load (lb) Max. Stress (psi) Ave. Load (lb) Ave. Stress (psi) % of Ave Load Frame Load (lb) Creep Coefficent

8649

Max. Load (Ib) | Max. Stress (psi) | Ave. Load (Ib) | Ave. Stress (psi) | % of Ave Load | Frame Load (Ib) | Creep Coefficent

9051

40

30

97820

76718

244550

255727

7-2	4/3/2001	20	D
			С

Age (days) Sample

28

AB

С

Mix	TB4H

Mix Cast Date Identifier

Mix Cast Date

TB5H4-2

Identifier

TB6H4

Identifier	Date
TB1H4-2	4/5/2007

Mix TB1H4-2 Cast Date 3/8/2007

Mix	TB1H5-2
Cast Date	3/8/2007

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)	% of Ave Load	Frame Load (lb)	Creep Coefficent
		A	234390	8144						
TB1H5-2	TB1H5-2 4/5/2007	28	В	239670	8477	233200	8199	40	93280	0.671
			С	225540	7977					

Mix TB2H5 Cast Date 2/1/2007

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)	% of Ave Load	Frame Load (lb)	Creep Coefficent
			А	247780	8608					
TB2H5	3/1/2007	28	В	265460	9389	252960	8895	30	75888	1.947
			С	245640	8688	1				

Mix TB3H5 Cast Date 2/6/2007

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)	% of Ave Load	Frame Load (lb)	Creep Coefficent
			A	248430	8787					
TB3H5	3/6/2007	28	В	249150	8812	245830	8695	40	98332	1.273
			С	239910	8485					

 Mix
 TB4H5

 Cast Date
 2/6/2007

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)	% of Ave Load	Frame Load (Ib)	Creep Coefficent
			A	273700	9680					
TB4H5	3/6/2007	28	В	270830	9579	270587	9570	40	108235	1.596
			С	267230	9451					

 Mix
 TB5H5

 Cast Date
 2/8/2007

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)	% of Ave Load	Frame Load (Ib)	Creep Coefficent
			А	262180	9273					
TB5H5	3/8/2007	28	В	260750	9222	262053	9268	40	104821	-
			С	263230	9310					

Mix TB6H5 Cast Date 2/8/2007

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)	% of Ave Load	Frame Load (lb)	Creep Coefficent
			А	267490	9461					
TB6H5	3/8/2007	28	В	267180	9450	266677	9432	40	106671	0.896
			С	265360	9385					

Mix TB7H5 Cast Date 2/15/2007

Identifier	Date	Age (days)	Sample	Max. Load (lb)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)	% of Ave Load	Frame Load (Ib)	Creep Coefficent
			A	211550	7482					
TB7H5	3/15/2007	28	В	210750	7100	214250	7460	30	64275	-
			С	220450	7797					

Mix TB8H5 Cast Date 2/15/2007

Identifier	Date	Age (days)	Sample	Max. Load (Ib)	Max. Stress (psi)	Ave. Load (lb)	Ave. Stress (psi)	% of Ave Load	Frame Load (lb)	Creep Coefficent
			А	238400	8432					
TB8H5	3/15/2007	28	В	233650	8264	238860	8448	30	71658	0.096
			С	244530	8649					

BACKGROUND CHLORIDE CONTENT

Mix Name	NaCI (Ib/yd ³)		RANGE PPM		AVE Mix Name		Na	CI (Ib/y	′d³)	RANGE	PPM	AVE	
	Α	В	С	NANCE	1 1 141	(lb/yd ³)		Α	В	С	RANCE		(lb/yd ³)
TB1H4	0.268	0.271	0.269	0.003	70.9	0.269	TB1A4	0.191	0.184	0.201	0.017	50.2	0.192
TB2H4	0.404	0.424	0.413	0.020	110.1	0.414	TB2A4	0.323	0.308	0.352	0.044	86.9	0.328
TB3H4	0.203	0.222	0.207	0.019	55.3	0.211	TB3A4	0.318	0.345	0.360	0.042	87.5	0.341
TB4H4	0.221	0.222	0.214	0.008	58.4	0.219	TB4A4	4.096	4.237	4.113	0.141	1088.9	4.149
TB5H4	0.265	0.251	0.263	0.014	69.5	0.260	TB5A4	2.096	2.132	2.142	0.046	554.7	2.123
TB6H4	0.215	0.231	0.234	0.019	60.6	0.227	TB6A4	1.262	1.272	1.256	0.016	329.5	1.263
TB7H4	0.239	0.249	0.252	0.013	66.2	0.247	TB7A4	0.548	0.528	0.55	0.022	141.3	0.542
TB8H4	0.185	0.198	0.228	0.043	54.0	0.204	TB8A4	1.422	1.478	1.426	0.056	381.8	1.442
	80 ppm standard			77.8	0.210			30 ppn	1 standa	ırd	27.2	0.103	

Mix Name	Na	CI (Ib/y	/d ³)	RANGE	PPM	AVE	Mix Name	Na	CI (Ib/y	/d³)	RANGE	PPM	AVE
	Α	В	С			(lb/yd ³)		Α	В	С	NANOL	1 1 141	(lb/yd ³)
TB1H5	0.261	0.253	0.279	0.026	70.2	0.264	TB1A5	0.183	0.190	0.181	0.009	49.2	0.185
TB2H5	0.313	0.302	0.310	0.011	82.6	0.308	TB2A5	0.222	0.214	0.231	0.017	59.7	0.222
TB3H5	0.229	0.252	0.246	0.023	64.5	0.242	TB3A5	0.169	0.181	0.172	0.012	45.7	0.174
TB4H5	0.221	0.248	0.227	0.027	61.7	0.232	TB4A5	0.163	0.157	0.154	0.009	41.6	0.158
TB5H5	0.761	0.747	0.742	0.019	200.4	0.750	TB5A5	0.161	0.173	0.175	0.014	44.9	0.170
TB6H5	0.624	0.606	0.671	0.065	168.4	0.634	TB6A5	0.166	0.149	0.176	0.027	43.7	0.164
TB7H5	0.498	0.546	0.481	0.065	136.4	0.508	TB7A5	0.143	0.158	0.162	0.019	41.4	0.154
TB8H5	0.523	0.511	0.535	0.024	139.5	0.523	TB8A5	0.152	0.175	0.16	0.023	43.2	0.162
		200 pp	n stand	ard	202.5	0.765			90 ppn	n standa	ard	89.8	0.335

AASHTO CEMENT - CLASS IV CONCRETE (364 DAYS)

Sample TB1H4-A

Depth (in)-		NaCl (lb/yd³)	
Deptil (iii)-	Α	В	С	AVG
0.250	38.722	39.058	38.310	38.697
0.500	29.651	29.840	30.426	29.972
0.750	13.894	14.235	14.156	14.095
1.000	2.745	2.897	2.894	2.845
1.250	0.424	0.428	0.423	0.425
1.500	0.294	0.281	0.298	0.291
1.750	0.292	0.293	0.283	0.289
2.000	0.299	0.281	0.288	0.289

Sample TB1H4-B

Depth (in)		NaCl (lb/yd³)	
Deptil (iii)	Α	В	С	AVG
0.250	43.559	43.858	44.263	43.893
0.500	33.634	34.023	34.412	34.023
0.750	15.517	15.491	15.753	15.587
1.000	3.082	3.013	2.992	3.029
1.250	0.526	0.487	0.471	0.495
1.500	0.337	0.341	0.337	0.338
1.750	0.324	0.327	0.311	0.321
2.000	0.326	0.321	0.310	0.319

Sample TB1H4-C

Depth (in)-			NaCl ((lb/yd³)	
Deptil	(111)	Α	В	С	AVG
0.250)	37.745	37.791	37.663	37.733
0.500)	26.310	26.709	26.905	26.641
0.750)	11.253	11.408	11.336	11.332
1.000)	1.738	1.735	1.743	1.739
1.250)	0.367	0.365	0.381	0.371
1.500)	0.313	0.337	0.300	0.317
1.750)	0.298	0.292	0.302	0.297
2.000)	0.270	0.291	0.280	0.280

Sample TB2H4-A

Depth (in)-		NaCl (lb/yd ³)							
Deptil (iii)-	Α	В	С	AVG					
0.250	37.787	38.271	37.684	37.914					
0.500	22.355	21.945	21.797	22.032					
0.750	3.412	3.496	3.838	3.582					
1.000	0.425	0.411	0.398	0.411					
1.250	0.343	0.364	0.362	0.356					
1.500	0.344	0.360	0.351	0.352					
1.750	0.360	0.358	0.356	0.358					
2.000	0.307	0.314	0.311	0.311					

TB2H4-B Sample NaCl (lb/yd³) Depth (in) AVG Α В С 0.250 36.119 35.914 35.553 35.862 0.500 20.239 20.315 20.399 20.318 0.750 2.658 2.560 2.665 2.628 1.000 0.618 0.600 0.609 0.610 1.250 0.374 0.389 0.372 0.378 1.500 0.319 0.322 0.355 0.332 1.750 0.355 0.323 0.325 0.334 2.000 0.340 0.343 0.348 0.344

Sam	ole T	TB2H4-C							
Depth	(in)-	NaCl (lb/yd ³)							
Deptil	(11)-	Α	В	С	AVG				
0.25	0	34.108	34.489	34.333	34.310				
0.50	0	15.764	15.902	15.741	15.802				
0.75	0	2.293	2.310	2.405	2.336				
1.00	0	0.355	0.355	0.352	0.354				
1.25	0	0.336	0.332	0.330	0.333				
1.50	0	0.331	0.315	0.366	0.337				
1.750		0.272	0.273	0.290	0.278				
2.000		0.270	0.279	0.230	0.260				
1.50 1.75	0	0.331 0.272	0.315 0.273	0.366 0.290	0.337 0.278				

Sample	•	TB3H4-A				
Depth (in)		NaCl (lb/yd ³)			
Deptin ((in)	Α	В	C	AVG	
0.250		42.459	42.705	42.156	42.440	
0.500		29.933	29.869	29.219	29.674	
0.750		9.130	9.130	8.595	8.952	
1.000		0.588	0.588	0.565	0.580	
1.250		0.238	0.230	0.246	0.238	
1.500		0.217	0.217	0.231	0.222	
1.750		0.231	0.234	0.220	0.228	
2.000		0.212	0.197	0.200	0.203	
0	_	TRALLAR				

Sample TB3H4-B

Depth (in)-	NaCl (lb/yd ³)			
	Α	В	С	AVG
0.250	41.129	41.348	41.759	41.412
0.500	20.781	20.742	20.781	20.768
0.750	3.438	3.534	3.429	3.467
1.000	0.222	0.241	0.287	0.250
1.250	0.210	0.194	0.215	0.206
1.500	0.202	0.199	0.182	0.194
1.750	0.189	0.187	0.173	0.183
2.000	0.530	0.537	0.549	0.539

Sample TB3H4-C NaCl (lb/yd³)

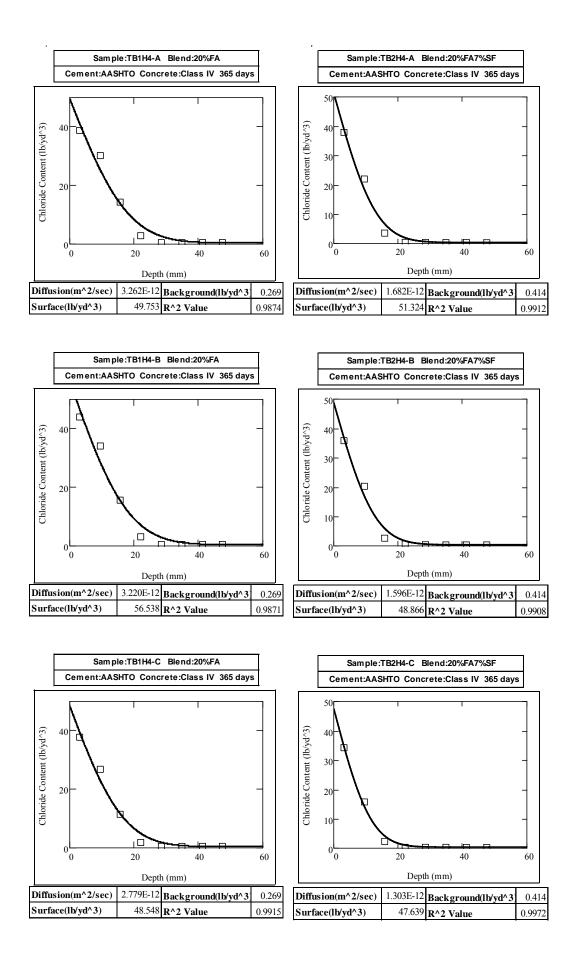
Depth (in)-						
Deptil	Deptii (iii)	Α	В	С	AVG	_
	0.250	41.022	41.455	41.058	41.178	
	0.500	25.909	25.529	25.612	25.683	
	0.750	6.606	6.556	6.465	6.542	
	1.000	0.292	0.291	0.317	0.300	
	1.250	0.199	0.212	0.208	0.206	
	1.500	0.181	0.186	0.188	0.185	
	1.750	0.183	0.191	0.200	0.191	
	2.000	0.229	0.207	0.185	0.207	

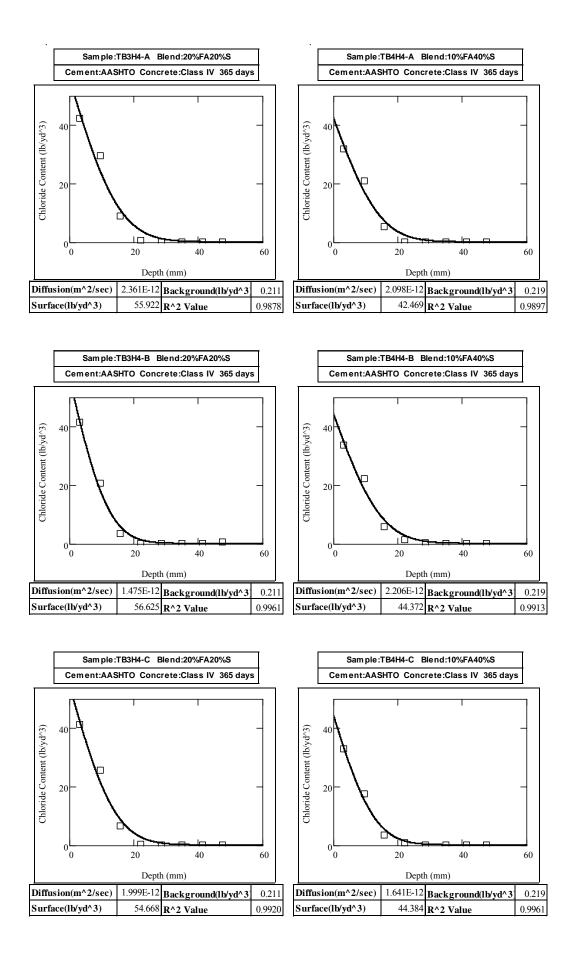
Sample TB4H4-A

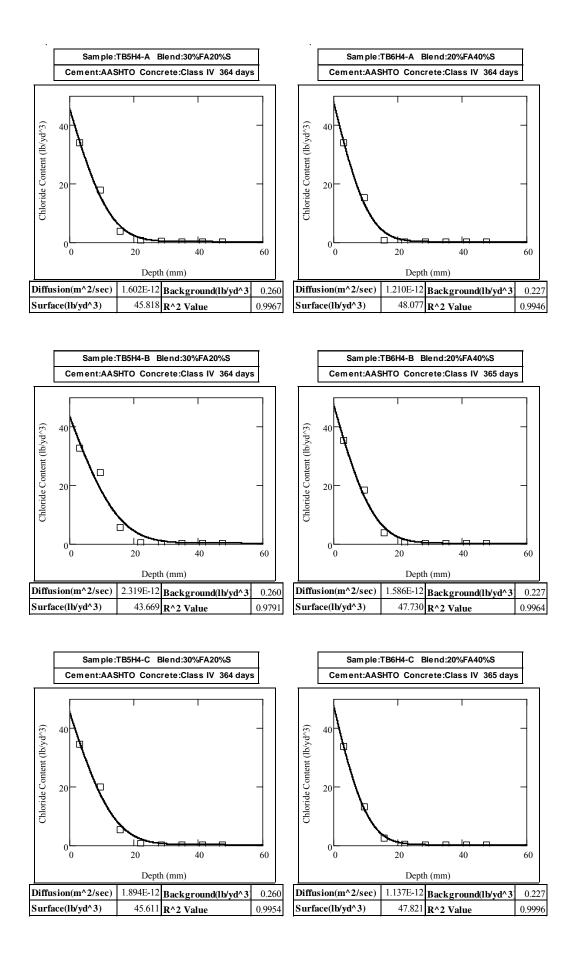
Depth (in)-	NaCl (lb/yd ³)			
Deptil (iii)-	Α	В	С	AVG
0.250	32.270	31.812	31.928	32.003
0.500	20.739	20.699	21.490	20.976
0.750	5.111	5.386	5.781	5.426
1.000	0.243	0.243	0.239	0.242
1.250	0.151	0.181	0.170	0.167
1.500	0.142	0.116	0.118	0.125
1.750	0.145	0.162	0.189	0.165
2.000	0.144	0.136	0.186	0.155

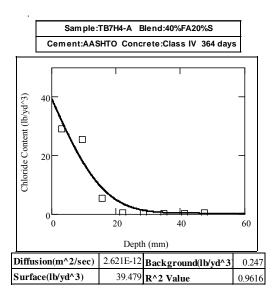
Sample TB4H4-B

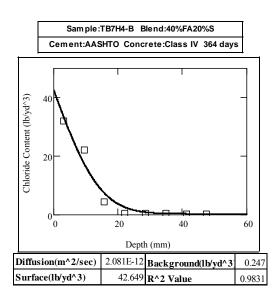
Depth (in)-	NaCl (lb/yd ³)			
Deptil (III)-	Α	В	С	AVG
0.250	33.960	33.671	33.616	33.749
0.500	22.090	22.515	22.121	22.242
0.750	5.864	6.034	5.886	5.928
1.000	1.397	1.403	1.388	1.396
1.250	0.379	0.400	0.383	0.387
1.500	0.160	0.158	0.159	0.159
1.750	0.176	0.161	0.135	0.157
2.000	0.160	0.169	0.166	0.165

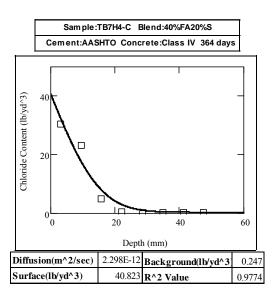

TB4H4-C Sample NaCl (lb/yd³) Depth (in)-В AVG Α С 0.250 33.233 32.735 32.947 32.972 0.500 17.539 17.779 17.539 17.619 0.750 3.536 3.545 3.614 3.565 1.000 0.820 0.840 0.822 0.827 0.253 1.250 0.267 0.241 0.251 1.500 0.213 0.221 0.223 0.219 1.750 0.217 0.204 0.236 0.219 0.214 0.246 0.235 0.232 2.000

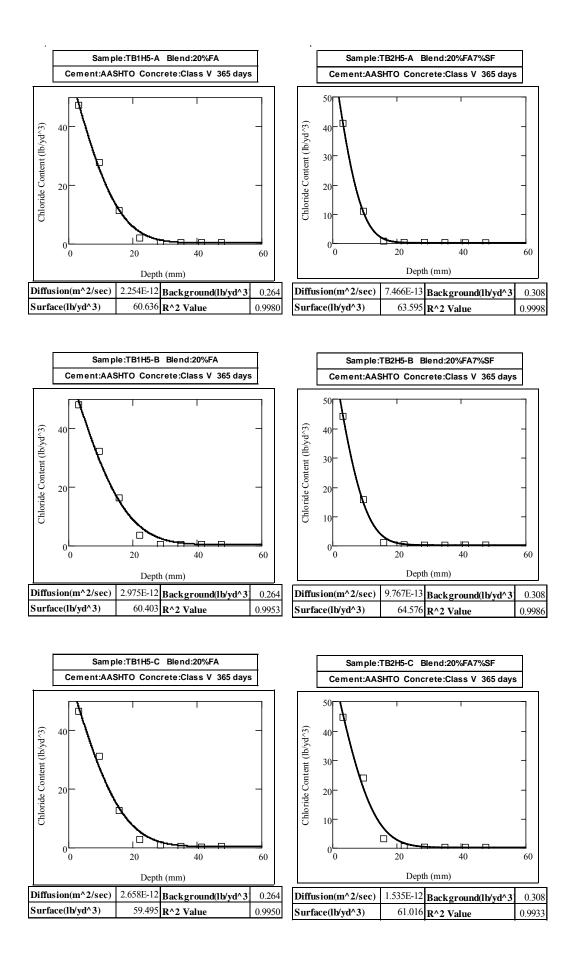

Sample	e TB5H4-A			
Depth ((in)	NaCl (lb/yd ³)		
-	A	B	C	AVG
0.250	34.203 17.549	33.985 17.575	33.686 18.051	33.958 17.725
0.300	3.604	3.788	3.715	3.702
1.000	0.650	0.609	0.674	0.644
1.250	0.314	0.326	0.311	0.317
1.500	0.182	0.170	0.189	0.180
1.750	0.190	0.201	0.178	0.190
2.000	0.196	0.200	0.195	0.197
Sample	e TB5H4-B			
Depth ((in)	NaCl (B		AVG
0.250	32.621	32.848	C 32.413	32.627
0.230	24.365	24.390	24.535	24.430
0.300	5.459	5.491	5.549	5.500
1.000	0.463	0.478	0.456	0.466
1.250	0.230	0.219	0.246	0.232
1.500	0.255	0.253	0.248	0.252
1.750	0.233	0.253	0.221	0.236
2.000	0.231	0.241	0.234	0.235
Sample	e TB5H4-C			
Depth ((in)	NaCl (lb/yd³)	
-	A A	В	С	AVG
0.250	34.025	34.598	34.651	34.425
0.500	20.321	20.075	19.569	19.988
0.750	5.337	5.572	5.318	5.409
1.000	0.540	0.552	0.560	0.551
1.250	0.248	0.247	0.260	0.252
1.500	0.237	0.231	0.232	0.233
1.750 2.000	0.240 0.306	0.242 0.236	0.232 0.232	0.238 0.258
2.000	0.300	0.230	0.232	0.238
Sample	e TB6H4-A			
Sample	e iboii4-A	NeOL (11- 6 13	
· · ·	(in)	NaCl (B		AVG
Depth ((in) <u> </u>	В	С	AVG 34 002
· · ·	(in)			AVG 34.002 15.350
Depth 0.250	(in) <u>A</u> 33.967	B 33.720	C 34.320	34.002
Depth 0.250 0.500	(in) <u>A</u> 33.967 15.510	B 33.720 15.030	C 34.320 15.511	34.002 15.350
Depth 0.250 0.500 0.750	(in) A 33.967 15.510 0.738	B 33.720 15.030 0.741	C 34.320 15.511 0.726	34.002 15.350 0.735
Depth 0.250 0.500 0.750 1.000	(in) A 33.967 15.510 0.738 0.195	B 33.720 15.030 0.741 0.242	C 34.320 15.511 0.726 0.223	34.002 15.350 0.735 0.220
Depth 0.250 0.500 0.750 1.000 1.250 1.500 1.750	(in) <u>A</u> 33.967 15.510 0.738 0.195 0.207 0.194 0.183	B 33.720 15.030 0.741 0.242 0.178 0.198 0.198	C 34.320 15.511 0.726 0.223 0.194 0.187 0.201	34.002 15.350 0.735 0.220 0.193 0.193 0.194
Depth 0.250 0.500 0.750 1.000 1.250 1.500	(in) <u>A</u> 33.967 15.510 0.738 0.195 0.207 0.194	B 33.720 15.030 0.741 0.242 0.178 0.198	C 34.320 15.511 0.726 0.223 0.194 0.187	34.002 15.350 0.735 0.220 0.193 0.193
Depth 0.250 0.500 0.750 1.000 1.250 1.500 1.750	(in) <u>A</u> 33.967 15.510 0.738 0.195 0.207 0.194 0.183 0.184	B 33.720 15.030 0.741 0.242 0.178 0.198 0.198 0.190	C 34.320 15.511 0.726 0.223 0.194 0.187 0.201 0.186	34.002 15.350 0.735 0.220 0.193 0.193 0.194
Depth 0 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample	(in) <u>A</u> 33.967 15.510 0.738 0.195 0.207 0.194 0.183 0.184 e TB6H4-B	B 33.720 15.030 0.741 0.242 0.178 0.198 0.198 0.190 NaCl (C 34.320 15.511 0.726 0.223 0.194 0.187 0.201 0.186 Ib/yd ³)	34.002 15.350 0.735 0.220 0.193 0.193 0.194 0.187
Depth (0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth ((in) <u>A</u> 33.967 15.510 0.738 0.195 0.207 0.194 0.183 0.184 e TB6H4-B (in) <u>A</u>	B 33.720 15.030 0.741 0.242 0.178 0.198 0.198 0.190 NaCl (B	C 34.320 15.511 0.726 0.223 0.194 0.187 0.201 0.186 Ib/yd ³) C	34.002 15.350 0.735 0.220 0.193 0.193 0.194 0.187
Depth (0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (0.250	(in) <u>A</u> 33.967 15.510 0.738 0.195 0.207 0.194 0.183 0.184 e TB6H4-B (in) <u>A</u> 35.383	B 33.720 15.030 0.741 0.242 0.178 0.198 0.198 0.190 NaCl (B 34.975	C 34.320 15.511 0.726 0.223 0.194 0.187 0.201 0.186 Ib/yd ³) C 35.526	34.002 15.350 0.735 0.220 0.193 0.193 0.194 0.187 AVG 35.295
Depth (0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (0.250 0.500	(in) A 33.967 15.510 0.738 0.195 0.207 0.194 0.183 0.184 e TB6H4-B (in) A 35.383 18.399	B 33.720 15.030 0.741 0.242 0.178 0.198 0.198 0.190 NaCl (B 34.975 18.333	C 34.320 15.511 0.726 0.223 0.194 0.187 0.201 0.186 Ib/yd ³) C 35.526 18.580	34.002 15.350 0.735 0.220 0.193 0.193 0.194 0.187 AVG 35.295 18.437
Depth (0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (0.250 0.500 0.750	(in) A 33.967 15.510 0.738 0.195 0.207 0.194 0.183 0.184 e TB6H4-B (in) A 35.383 18.399 3.717	B 33.720 15.030 0.741 0.242 0.178 0.198 0.198 0.190 NaCl (B 34.975 18.333 3.817	C 34.320 15.511 0.726 0.223 0.194 0.187 0.201 0.186 Ib/yd ³) C 35.526 18.580 3.800	34.002 15.350 0.735 0.220 0.193 0.193 0.194 0.187 AVG 35.295 18.437 3.778
Depth (0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (0.250 0.500 0.750 1.000	(in) A 33.967 15.510 0.738 0.195 0.207 0.194 0.183 0.184 e TB6H4-B (in) A 35.383 18.399 3.717 0.317	B 33.720 15.030 0.741 0.242 0.178 0.198 0.198 0.190 NaCl (B 34.975 18.333 3.817 0.338	C 34.320 15.511 0.726 0.223 0.194 0.187 0.201 0.186 Ib/yd ³) C 35.526 18.580 3.800 0.307	34.002 15.350 0.735 0.220 0.193 0.193 0.194 0.187 AVG 35.295 18.437 3.778 0.321
Depth (0.250 0.500 0.750 1.000 1.250 1.750 2.000 Sample Depth (0.250 0.750 0.750 1.000 1.250	(in) A 33.967 15.510 0.738 0.195 0.207 0.194 0.183 0.184 e TB6H4-B (in) A 35.383 18.399 3.717 0.317 0.256	B 33.720 15.030 0.741 0.242 0.178 0.198 0.198 0.190 NaCl (B 34.975 18.333 3.817 0.338 0.203	C 34.320 15.511 0.726 0.223 0.194 0.187 0.201 0.186 Ib/yd ³) C 35.526 18.580 3.800 0.307 0.209	34.002 15.350 0.735 0.220 0.193 0.193 0.194 0.187 AVG 35.295 18.437 3.778 0.321 0.223
Depth (0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample 0.250 0.500 0.500 0.750 1.000 1.250 1.500	(in) A 33.967 15.510 0.738 0.195 0.207 0.194 0.183 0.184 e TB6H4-B (in) A 35.383 18.399 3.717 0.317 0.256 0.243	B 33.720 15.030 0.741 0.242 0.178 0.198 0.198 0.190 NaCl (B 34.975 18.333 3.817 0.338 0.203 0.192	C 34.320 15.511 0.726 0.223 0.194 0.187 0.201 0.186 Ib/yd ³) C 35.526 18.580 3.800 0.307 0.209 0.191	34.002 15.350 0.735 0.220 0.193 0.193 0.194 0.187 AVG 35.295 18.437 3.778 0.321 0.223 0.209
Depth (0.250 0.500 0.750 1.000 1.250 1.750 2.000 Sample Depth (0.250 0.750 0.750 1.000 1.250	(in) A 33.967 15.510 0.738 0.195 0.207 0.194 0.183 0.184 e TB6H4-B (in) A 35.383 18.399 3.717 0.317 0.256	B 33.720 15.030 0.741 0.242 0.178 0.198 0.198 0.190 NaCl (B 34.975 18.333 3.817 0.338 0.203	C 34.320 15.511 0.726 0.223 0.194 0.187 0.201 0.186 Ib/yd ³) C 35.526 18.580 3.800 0.307 0.209	34.002 15.350 0.735 0.220 0.193 0.193 0.194 0.187 AVG 35.295 18.437 3.778 0.321 0.223
Depth 0 0.250 0.500 0.750 1.000 1.250 0.500 2.000 Sample 0.250 0.500 0.750 1.000 1.250 0.500 0.750 1.000 1.250 0.500 0.750 1.000	(in) A 33.967 15.510 0.738 0.195 0.207 0.194 0.183 0.184 e TB6H4-B (in) A 35.383 18.399 3.717 0.317 0.256 0.243 0.189 0.198	B 33.720 15.030 0.741 0.242 0.178 0.198 0.198 0.190 NaCl (B 34.975 18.333 3.817 0.338 0.203 0.192 0.192	C 34.320 15.511 0.726 0.223 0.194 0.187 0.201 0.186 Ib/yd³) C 35.526 18.580 3.800 0.307 0.209 0.191 0.233	34.002 15.350 0.735 0.220 0.193 0.193 0.194 0.187 AVG 35.295 18.437 3.778 0.321 0.223 0.209 0.205
Depth (0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample 0.250 0.500 0.500 0.500 1.000 1.250 1.000 1.250 1.500 1.250 Sample	(in) A 33.967 15.510 0.738 0.195 0.207 0.194 0.183 0.184 e TB6H4-B (in) A 35.383 18.399 3.717 0.317 0.317 0.256 0.243 0.189 0.198 e TB6H4-C	B 33.720 15.030 0.741 0.242 0.178 0.198 0.198 0.190 NaCl (B 34.975 18.333 3.817 0.338 0.203 0.192 0.192	C 34.320 15.511 0.726 0.223 0.194 0.187 0.201 0.186 Ib/yd³) C 35.526 18.580 3.800 0.307 0.209 0.191 0.233 0.188	34.002 15.350 0.735 0.220 0.193 0.193 0.194 0.187 AVG 35.295 18.437 3.778 0.321 0.223 0.209 0.205
Depth (0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample 0.250 0.500 0.750 1.000 1.250 1.500 1.250 1.500 0.750 2.000 Sample	(in) A 33.967 15.510 0.738 0.195 0.207 0.194 0.183 0.184 e TB6H4-B (in) A 35.383 18.399 3.717 0.317 0.256 0.243 0.189 0.198	B 33,720 15,030 0,741 0,242 0,178 0,198 0,198 0,190 NaCl (B 34,975 18,333 3,817 0,338 0,203 0,192 0,192 0,206	C 34.320 15.511 0.726 0.223 0.194 0.187 0.201 0.186 Ib/yd³) C 35.526 18.580 3.800 0.307 0.209 0.191 0.233 0.188	34.002 15.350 0.735 0.220 0.193 0.193 0.194 0.187 AVG 35.295 18.437 3.778 0.321 0.223 0.209 0.205
Depth (0.250 0.500 1.000 1.250 1.500 1.750 2.000 Sample 0.250 0.750 1.000 1.250 0.750 1.000 1.250 1.500 1.750 2.000 Sample 0.250 0.250 0.250	(in) A 33.967 15.510 0.738 0.195 0.207 0.194 0.183 0.184 e TB6H4-B (in) A 35.383 18.399 3.717 0.317 0.256 0.243 0.189 0.189 e TB6H4-C (in) A 33.483	B 33.720 15.030 0.741 0.242 0.178 0.198 0.198 0.190 NaCl (B 34.975 18.333 3.817 0.338 0.203 0.192 0.192 0.206 NaCl (B 33.830	C 34.320 15.511 0.726 0.223 0.194 0.187 0.201 0.186 Ib/yd³) C 35.526 18.580 3.800 0.307 0.209 0.191 0.233 0.188 Ib/yd³) C 34.076	34.002 15.350 0.735 0.220 0.193 0.193 0.194 0.187 AVG 35.295 18.437 3.778 0.321 0.223 0.209 0.205 0.197 AVG 33.796
Depth (0.250 0.500 0.750 1.000 1.250 1.750 2.000 Sample 0.250 0.500 0.750 1.000 1.250 1.500 1.250 0.750 2.000 Sample 0.250 0.500	(in) A 33.967 15.510 0.738 0.195 0.207 0.194 0.183 0.184 e TB6H4-B (in) A 35.383 18.399 3.717 0.317 0.317 0.256 0.243 0.189 0.198 e TB6H4-C (in) A 33.483 13.180	B 33.720 15.030 0.741 0.242 0.178 0.198 0.198 0.190 NaCl (B 34.975 18.333 3.817 0.338 0.203 0.192 0.192 0.206 NaCl (B 33.830 12.985	C 34.320 15.511 0.726 0.223 0.194 0.187 0.201 0.186 Ib/yd³) C 35.526 18.580 3.800 0.307 0.209 0.191 0.233 0.188 Ib/yd³) C 34.076 13.198	34.002 15.350 0.735 0.220 0.193 0.193 0.194 0.187 AVG 35.295 18.437 3.778 0.321 0.223 0.209 0.205 0.197 AVG 33.796 13.121
Depth (0.250 0.500 1.000 1.250 1.500 1.750 2.000 Sample 0.250 0.500 0.500 1.750 2.000 1.250 1.000 1.250 1.500 1.750 2.000 Sample 0.250 0.500 0.250 0.500 0.750	(in) A 33.967 15.510 0.738 0.195 0.207 0.194 0.183 0.184 e TB6H4-B (in) A 35.383 18.399 3.717 0.317 0.317 0.256 0.243 0.189 0.198 e TB6H4-C (in) A 33.483 13.180 2.269	B 33,720 15,030 0,741 0,242 0,178 0,198 0,190 NaCl (B 34.975 18.333 3.817 0,338 0,203 0,192 0,192 0,206 NaCl (B 33.830 12.985 2,401	C 34.320 15.511 0.726 0.223 0.194 0.187 0.201 0.186 Ib/yd³) C 35.526 18.580 3.800 0.307 0.209 0.191 0.233 0.188 Ib/yd³) C 34.076 13.198 2.552	34.002 15.350 0.735 0.220 0.193 0.193 0.194 0.187 AVG 35.295 18.437 3.778 0.321 0.223 0.209 0.205 0.197 AVG 33.796 13.121 2.407
Depth (0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample 0.250 0.500 0.750 1.000 1.250 0.500 0.750 1.000 1.750 2.000 Sample 0.250 0.500 0.750 0.500 0.750 1.000	(in) A 33.967 15.510 0.738 0.195 0.207 0.194 0.183 0.184 e TB6H4-B (in) A 35.383 18.399 3.717 0.317 0.256 0.243 0.189 0.198 e TB6H4-C (in) A 33.483 13.180 2.269 0.435	B 33.720 15.030 0.741 0.242 0.178 0.198 0.190 NaCl (B 34.975 18.333 3.817 0.338 0.203 0.192 0.192 0.206 NaCl (B 33.830 12.985 2.401 0.418	C 34.320 15.511 0.726 0.223 0.194 0.187 0.201 0.186 Ib/yd³ C 35.526 18.580 3.800 0.307 0.209 0.191 0.233 0.188 Ib/yd³ C 34.076 13.198 2.552 0.424	34.002 15.350 0.735 0.220 0.193 0.193 0.194 0.187 AVG 35.295 18.437 3.778 0.321 0.223 0.209 0.205 0.197 AVG 33.796 13.121 2.407 0.426
Depth (0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample 0.250 0.500 0.750 1.250 1.500 1.250 0.500 0.750 1.250 0.500 0.750 1.000 1.250 0.250 0.2500 0.750 1.000 1.250 0.2500 0.750 1.000 1.250	(in) A 33.967 15.510 0.738 0.195 0.207 0.194 0.183 0.184 e TB6H4-B (in) A 35.383 18.399 3.717 0.317 0.256 0.243 0.189 0.198 e TB6H4-C (in) A 33.483 13.180 2.269 0.435 0.253	B 33.720 15.030 0.741 0.242 0.178 0.198 0.198 0.190 NaCl (B 34.975 18.333 3.817 0.338 0.203 0.192 0.192 0.206 NaCl (B 33.830 12.985 2.401 0.418 0.215	C 34.320 15.511 0.726 0.223 0.194 0.187 0.201 0.186 Ib/yd³) C 35.526 18.580 3.800 0.307 0.209 0.191 0.233 0.188 Ib/yd³) C 34.076 13.198 2.552 0.424 0.234	34.002 15.350 0.735 0.220 0.193 0.193 0.194 0.187 AVG 35.295 18.437 3.778 0.321 0.223 0.209 0.205 0.197 AVG 33.796 13.121 2.407 0.426 0.234
Depth (0.250 0.500 0.750 1.000 1.250 0.750 2.000 Sample 0.250 0.500 0.750 1.000 1.750 2.000 Sample Depth (0.250 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 1.250 0.500 0.500 0.750 1.250 0.500 0.750 1.250 0.500 0.750 1.250 0.500 0.750 1.250 0.500 0.750 1.250 0.500 0.750 1.250 0.500 0.750 1.250 0.500 0.750 1.250 0.500 0.750 1.250 0.500 0.750 0.500 0.750 1.250 0.500 0.750 1.250 0.500 0.750 0.500 0.750 1.000 0.750 0.500 0.500 0.750 0.500	(in) A 33.967 15.510 0.738 0.195 0.207 0.194 0.183 0.184 e TB6H4-B (in) A 35.383 18.399 3.717 0.317 0.256 0.243 0.189 0.198 e TB6H4-C (in) A 33.483 13.180 2.269 0.435 0.253 0.202	B 33,720 15,030 0,741 0,242 0,178 0,198 0,198 0,190 NaCl (B 34,975 18,333 3,817 0,338 0,203 0,192 0,206 NaCl (B 33,830 12,985 2,401 0,418 0,215 0,222	C 34.320 15.511 0.726 0.223 0.194 0.187 0.201 0.186 Ib/yd³) C 35.526 18.580 3.800 0.307 0.209 0.191 0.233 0.188 Ib/yd³) C 34.076 13.198 2.552 0.424 0.234 0.209	34.002 15.350 0.735 0.220 0.193 0.193 0.194 0.187 AVG 35.295 18.437 3.778 0.321 0.223 0.209 0.205 0.197 AVG 33.796 13.121 2.407 0.426 0.234 0.211
Depth (0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample 0.250 0.500 0.750 1.250 1.500 1.250 0.500 0.750 1.250 0.2500 0.750 1.000 1.250 0.2500 0.750 1.000 1.250 0.2500 0.750 1.000 1.250	(in) A 33.967 15.510 0.738 0.195 0.207 0.194 0.183 0.184 e TB6H4-B (in) A 35.383 18.399 3.717 0.317 0.256 0.243 0.189 0.198 e TB6H4-C (in) A 33.483 13.180 2.269 0.435 0.253	B 33.720 15.030 0.741 0.242 0.178 0.198 0.198 0.190 NaCl (B 34.975 18.333 3.817 0.338 0.203 0.192 0.192 0.206 NaCl (B 33.830 12.985 2.401 0.418 0.215	C 34.320 15.511 0.726 0.223 0.194 0.187 0.201 0.186 Ib/yd³) C 35.526 18.580 3.800 0.307 0.209 0.191 0.233 0.188 Ib/yd³) C 34.076 13.198 2.552 0.424 0.234	34.002 15.350 0.735 0.220 0.193 0.193 0.194 0.187 AVG 35.295 18.437 3.778 0.321 0.223 0.209 0.205 0.197 AVG 33.796 13.121 2.407 0.426 0.234

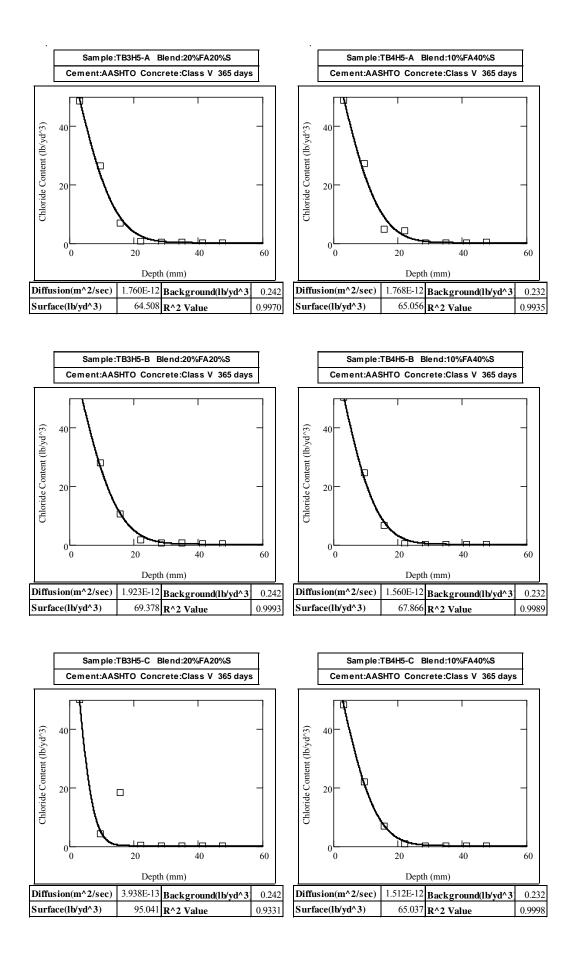

Sample	TB7H4-A			
Depth (in)-		NaCl (lb/yd³)	
Deptil (III)	Α	В	С	AVG
0.250	28.661	29.319	29.081	29.020
0.500	25.407	25.033	25.654	25.365
0.750	5.314	5.314	5.356	5.328
1.000	0.451	0.420	0.407	0.426
1.250	0.362	0.328	0.310	0.333
1.500	0.244	0.261	0.238	0.248
1.750	0.255	0.239	0.282	0.259
2.000	0.273	0.299	0.286	0.286

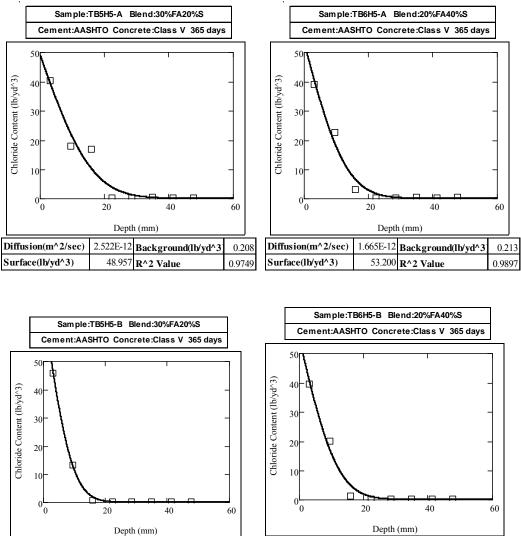

Depth (in) A 0.250 32.099 0.500 21.982 0.750 4 167 4 167			
0.250 32.099 0.500 21.982	NaCl (lb/yd³)	
0.500 21.982	В	С	AVG
	31.497	31.802	31.799
0 750 4 167	22.390	21.614	21.995
0.1.00	4.233	4.167	4.189
1.000 0.432	0.428	0.456	0.439
1.250 0.293	0.328	0.344	0.322
1.500 0.278	0.284	0.290	0.284
1.750 0.249	0.246	0.262	0.252
2.000 0.206	0.271	0.271	0.249


Sample	TB7H4-C			
Depth (in)		NaCl (lb/yd³)	
Deptil (III)	Α	В	С	AVG
0.250	30.276	30.706	30.275	30.419
0.500	22.668	22.881	23.309	22.953
0.750	4.550	4.891	4.835	4.759
1.000	0.528	0.487	0.511	0.509
1.250	0.247	0.250	0.246	0.248
1.500	0.216	0.207	0.214	0.212
1.750	0.236	0.251	0.262	0.250
2.000	0.203	0.200	0.202	0.202



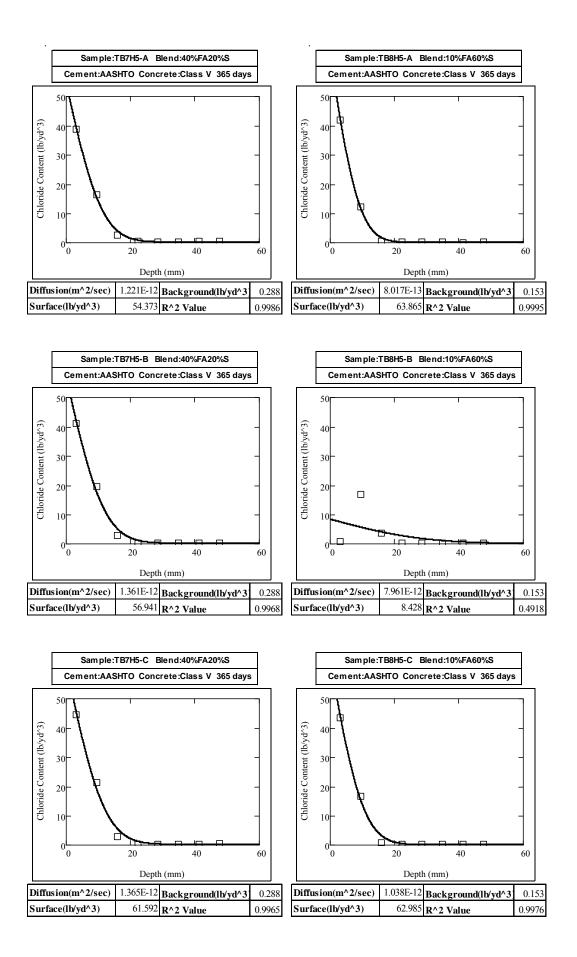

AASHTO CEMENT - CLASS V CONCRETE (364 DAYS) Sample TB1H5-A


Sample	TB1H5-A			
Depth (in)		NaCI (lb/yd³)	
	Α	В	С	AVG
0.250	47.381	47.228	46.908	47.172
0.500	27.580	27.768	27.810	27.719
0.750	11.293	11.277	11.219	11.263
1.000	1.840	1.948	1.893	1.894
1.250				
	0.301	0.274	0.295	0.290
1.500	0.292	0.292	0.291	0.292
1.750	0.361	0.374	0.380	0.372
2.000	0.353	0.351	0.346	0.350
Sample	TB1H5-B			
Depth (in)		NaCl (lb/yd³)	
Bopin (iii)	Α	В	С	AVG
0.250	47.742	48.230	47.801	47.924
0.500	32.327	32.102	32.094	32.174
0.750	316.368	16.328	16.190	16.295
1.000	3.480	3.566		3.573
			3.673	
1.250	0.521	0.477	0.497	0.498
1.500	0.365	0.379	0.377	0.374
1.750	0.328	0.301	0.304	0.311
2.000	0.354	0.347	0.372	0.358
Sample	TB1H5-C			
Depth (in)		NaCI (lb/yd³)	
Deptii (iii)	A	В	С	AVG
0.250	46.400	46.213	46.827	46.480
0.500	31.040	31.192	31.216	31.149
0.750	12.780	12.884	12.527	12.730
1.000	2.749	2.689	2.705	2.714
1.250	0.808	0.793	0.807	0.803
1.500	0.276	0.278	0.247	0.267
1.750	0.231	0.229	0.245	0.235
2.000	0.313	0.263	0.269	0.282
Sample	TB2H5-A			
		NaCl (lb/yd³)	
Depth (in)		NaCl (B	lb/yd³) C	AVG
				AVG 40.996
Depth (in)	A	В	С	
Depth (in) 0.250	A 41.059	B 41.267	C 40.662	40.996
Depth (in) 0.250 0.500 0.750	A 41.059 11.113 0.843	B 41.267 11.129 0.864	C 40.662 10.835 0.829	40.996 11.026 0.845
Depth (in) 0.250 0.500 0.750 1.000	A 41.059 11.113 0.843 0.360	B 41.267 11.129 0.864 0.412	C 40.662 10.835 0.829 0.351	40.996 11.026 0.845 0.374
Depth (in) 0.250 0.500 0.750 1.000 1.250	A 41.059 11.113 0.843 0.360 0.344	B 41.267 11.129 0.864 0.412 0.369	C 40.662 10.835 0.829 0.351 0.358	40.996 11.026 0.845 0.374 0.357
Depth (in) 0.250 0.500 0.750 1.000 1.250 1.500	A 41.059 11.113 0.843 0.360 0.344 0.365	B 41.267 11.129 0.864 0.412 0.369 0.295	C 40.662 10.835 0.829 0.351 0.358 0.364	40.996 11.026 0.845 0.374 0.357 0.341
Depth (in) 0.250 0.500 0.750 1.000 1.250 1.500 1.750	A 41.059 11.113 0.843 0.360 0.344 0.365 0.302	B 41.267 11.129 0.864 0.412 0.369 0.295 0.308	C 40.662 10.835 0.829 0.351 0.358 0.364 0.325	40.996 11.026 0.845 0.374 0.357 0.341 0.312
Depth (in) 0.250 0.500 0.750 1.000 1.250 1.500	A 41.059 11.113 0.843 0.360 0.344 0.365	B 41.267 11.129 0.864 0.412 0.369 0.295	C 40.662 10.835 0.829 0.351 0.358 0.364	40.996 11.026 0.845 0.374 0.357 0.341
Depth (in) 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000	A 41.059 11.113 0.843 0.360 0.344 0.365 0.302 0.313	B 41.267 11.129 0.864 0.412 0.369 0.295 0.308	C 40.662 10.835 0.829 0.351 0.358 0.364 0.325	40.996 11.026 0.845 0.374 0.357 0.341 0.312
Depth (in) 0.250 0.500 0.750 1.000 1.250 1.500 1.750	A 41.059 11.113 0.843 0.360 0.344 0.365 0.302	B 41.267 11.129 0.864 0.412 0.369 0.295 0.308 0.284	C 40.662 10.835 0.829 0.351 0.358 0.364 0.325 0.285	40.996 11.026 0.845 0.374 0.357 0.341 0.312
Depth (in) 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000	A 41.059 11.113 0.843 0.360 0.344 0.365 0.302 0.313 TB2H5-B	B 41.267 11.129 0.864 0.412 0.369 0.295 0.308 0.284 NaCl (C 40.662 10.835 0.829 0.351 0.358 0.364 0.325 0.285	40.996 11.026 0.845 0.374 0.357 0.341 0.312 0.294
Depth (in) 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (in)	A 41.059 11.113 0.843 0.360 0.344 0.365 0.302 0.313 TB2H5-B A	B 41.267 11.129 0.864 0.412 0.369 0.295 0.308 0.284 NaCl (B	C 40.662 10.835 0.829 0.351 0.358 0.364 0.325 0.285 Ib/yd ³) C	40.996 11.026 0.845 0.374 0.357 0.341 0.312 0.294
Depth (in) 0.250 0.500 0.750 1.000 1.250 1.750 2.000 Sample Depth (in) 0.250	A 41.059 11.113 0.843 0.360 0.344 0.365 0.302 0.313 TB2H5-B A 44.513	B 41.267 11.129 0.864 0.412 0.369 0.295 0.308 0.284 NaCl (B 44.227	C 40.662 10.835 0.829 0.351 0.358 0.364 0.325 0.285 Ib/yd ³) C 43.766	40.996 11.026 0.845 0.374 0.357 0.341 0.312 0.294 AVG 44.169
Depth (in) 0.250 0.500 0.750 1.000 1.250 0.500 1.500 1.750 2.000 Sample Depth (in) 0.250 0.500	A 41.059 11.113 0.843 0.360 0.344 0.365 0.302 0.313 TB2H5-B A 44.513 15.801	B 41.267 11.129 0.864 0.412 0.369 0.295 0.308 0.284 NaCl (B 44.227 15.676	C 40.662 10.835 0.829 0.351 0.358 0.364 0.325 0.285 Ib/yd ³) C 43.766 15.918	40.996 11.026 0.845 0.374 0.357 0.341 0.312 0.294 AVG 44.169 15.798
Depth (in) 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (in) 0.250 0.500 0.750	A 41.059 11.113 0.843 0.360 0.344 0.365 0.302 0.313 TB2H5-B A 44.513	B 41.267 11.129 0.864 0.412 0.369 0.295 0.308 0.284 NaCl (B 44.227 15.676 1.135	C 40.662 10.835 0.829 0.351 0.358 0.364 0.325 0.285 Ib/yd ³) C 43.766	40.996 11.026 0.845 0.374 0.357 0.341 0.312 0.294 AVG 44.169
Depth (in) 0.250 0.500 0.750 1.000 1.250 0.500 1.500 1.750 2.000 Sample Depth (in) 0.250 0.500	A 41.059 11.113 0.843 0.360 0.344 0.365 0.302 0.313 TB2H5-B A 44.513 15.801	B 41.267 11.129 0.864 0.412 0.369 0.295 0.308 0.284 NaCl (B 44.227 15.676	C 40.662 10.835 0.829 0.351 0.358 0.364 0.325 0.285 Ib/yd ³) C 43.766 15.918	40.996 11.026 0.845 0.374 0.357 0.341 0.312 0.294 AVG 44.169 15.798
Depth (in) 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (in) 0.250 0.500 0.750	A 41.059 11.113 0.843 0.360 0.344 0.365 0.302 0.313 TB2H5-B A 44.513 15.801 1.088	B 41.267 11.129 0.864 0.412 0.369 0.295 0.308 0.284 NaCl (B 44.227 15.676 1.135	C 40.662 10.835 0.829 0.351 0.358 0.364 0.325 0.285 Ib/yd ³) C 43.766 15.918 1.161	40.996 11.026 0.845 0.374 0.357 0.341 0.312 0.294 AVG 44.169 15.798 1.128
Depth (in) 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (in) 0.250 0.500 0.750 1.000	A 41.059 11.113 0.843 0.360 0.344 0.365 0.302 0.313 TB2H5-B A 44.513 15.801 1.088 0.368	B 41.267 11.129 0.864 0.412 0.369 0.295 0.308 0.284 NaCl (B 44.227 15.676 1.135 0.413	C 40.662 10.835 0.829 0.351 0.358 0.364 0.325 0.285 Ib/yd³ C 43.766 15.918 1.161 0.405	40.996 11.026 0.845 0.374 0.357 0.341 0.312 0.294 AVG 44.169 15.798 1.128 0.395
Depth (in) 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (in) 0.250 0.500 0.750 1.000 1.250	A 41.059 11.113 0.843 0.360 0.344 0.365 0.302 0.313 TB2H5-B A 44.513 15.801 1.088 0.368 0.245	B 41.267 11.129 0.864 0.412 0.369 0.295 0.308 0.284 NaCl (B 44.227 15.676 1.135 0.413 0.262	C 40.662 10.835 0.829 0.351 0.358 0.364 0.325 0.285 Ib/yd³) C 43.766 15.918 1.161 0.405 0.257	40.996 11.026 0.845 0.374 0.357 0.341 0.294 AVG 44.169 15.798 1.128 0.395 0.255
Depth (in) 0.250 0.500 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (in) 0.250 0.500 0.750 1.000 1.250 1.500 1.250 1.500 1.250 1.500 1.750 1.500	A 41.059 11.113 0.843 0.360 0.344 0.365 0.302 0.313 TB2H5-B A 44.513 15.801 1.088 0.368 0.245 0.268	B 41.267 11.129 0.864 0.412 0.369 0.295 0.308 0.284 NaCl (B 44.227 15.676 1.135 0.413 0.262 0.286 0.302	C 40.662 10.835 0.829 0.351 0.358 0.364 0.325 0.285 Ib/yd³) C 43.766 15.918 1.161 0.405 0.257 0.240	40.996 11.026 0.845 0.374 0.357 0.341 0.294 AVG 44.169 15.798 1.128 0.395 0.255 0.265
Depth (in) 0.250 0.500 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (in) 0.250 0.500 0.750 1.000 1.250 1.500	A 41.059 11.113 0.843 0.360 0.344 0.365 0.302 0.313 TB2H5-B 44.513 15.801 1.088 0.368 0.245 0.268 0.282	B 41.267 11.129 0.864 0.412 0.369 0.295 0.308 0.284 NaCl (B 44.227 15.676 1.135 0.413 0.262 0.286	C 40.662 10.835 0.829 0.351 0.358 0.364 0.325 0.285 Ib/yd³) C 43.766 15.918 1.161 0.405 0.257 0.240 0.319	40.996 11.026 0.845 0.374 0.357 0.341 0.312 0.294 AVG 44.169 15.798 1.128 0.255 0.255 0.265 0.301
Depth (in) 0.250 0.500 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (in) 0.250 0.500 0.750 1.000 1.250 1.500 1.250 1.500 1.250 1.500 1.750 1.500	A 41.059 11.113 0.843 0.360 0.344 0.365 0.302 0.313 TB2H5-B 44.513 15.801 1.088 0.368 0.245 0.268 0.282	B 41.267 11.129 0.864 0.412 0.369 0.295 0.308 0.284 NaCl (B 44.227 15.676 1.135 0.413 0.262 0.286 0.302 0.283	C 40.662 10.835 0.829 0.351 0.358 0.364 0.325 0.285 Ib/yd³ C 43.766 15.918 1.161 0.405 0.257 0.240 0.319 0.291	40.996 11.026 0.845 0.374 0.357 0.341 0.312 0.294 AVG 44.169 15.798 1.128 0.255 0.255 0.265 0.301
Depth (in) 0.250 0.500 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (in) 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample	A 41.059 11.113 0.843 0.360 0.344 0.365 0.302 0.313 TB2H5-B A 44.513 15.801 1.088 0.368 0.245 0.268 0.296 TB2H5-C	B 41.267 11.129 0.864 0.412 0.369 0.295 0.308 0.284 NaCl (B 44.227 15.676 1.135 0.413 0.262 0.286 0.302 0.283 NaCl (C 40.662 10.835 0.829 0.351 0.358 0.364 0.325 0.285 Ib/yd³ C 43.766 15.918 1.161 0.405 0.257 0.240 0.319 0.291 Ib/yd³	40.996 11.026 0.845 0.374 0.357 0.341 0.294 AVG 44.169 15.798 1.128 0.395 0.255 0.265 0.301 0.290
Depth (in) 0.250 0.500 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (in) 0.250 0.500 0.750 1.000 1.250 1.500 1.250 1.500 1.750 2.000	A 41.059 11.113 0.843 0.360 0.344 0.365 0.302 0.313 TB2H5-B A 44.513 15.801 1.088 0.368 0.245 0.268 0.282 0.296 TB2H5-C	B 41.267 11.129 0.864 0.412 0.369 0.295 0.308 0.284 NaCl (B 44.227 15.676 1.135 0.413 0.262 0.286 0.302 0.283	C 40.662 10.835 0.829 0.351 0.358 0.364 0.325 0.285 Ib/yd³ C 43.766 15.918 1.161 0.405 0.257 0.240 0.319 0.291	40.996 11.026 0.845 0.374 0.357 0.341 0.312 0.294 AVG 44.169 15.798 1.128 0.255 0.255 0.265 0.301
Depth (in) 0.250 0.500 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (in) 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample	A 41.059 11.113 0.843 0.360 0.344 0.365 0.302 0.313 TB2H5-B A 44.513 15.801 1.088 0.368 0.245 0.268 0.296 TB2H5-C	B 41.267 11.129 0.864 0.412 0.369 0.295 0.308 0.284 NaCl (B 44.227 15.676 1.135 0.413 0.262 0.286 0.302 0.283 NaCl (C 40.662 10.835 0.829 0.351 0.358 0.364 0.325 0.285 Ib/yd³ C 43.766 15.918 1.161 0.405 0.257 0.240 0.319 0.291 Ib/yd³	40.996 11.026 0.845 0.374 0.357 0.341 0.294 AVG 44.169 15.798 1.128 0.395 0.255 0.265 0.301 0.290
Depth (in) 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth 0.250 0.500 0.250 0.500 0.750 1.000 1.250 1.500 1.500 1.750 2.000 3.500 1.500 1.750 2.000 3.500 1.750 2.000 Sample Depth Depth (in)	A 41.059 11.113 0.843 0.360 0.344 0.365 0.302 0.313 TB2H5-B A 44.513 15.801 1.088 0.368 0.245 0.268 0.296 TB2H5-C	B 41.267 11.129 0.864 0.412 0.369 0.295 0.308 0.284 NaCl (B NaCl (B	C 40.662 10.835 0.829 0.351 0.358 0.364 0.325 0.285 Ib/yd³ C Ib/yd³ C	40.996 11.026 0.845 0.374 0.357 0.341 0.294 AVG 44.169 15.798 1.128 0.395 0.255 0.265 0.301 0.290 AVG
Depth (in) 0.250 0.500 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (in) 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample 0.250 0.500 1.750 2.000 Sample Depth (in) 0.250 0.500	A 41.059 11.113 0.843 0.360 0.344 0.365 0.302 0.313 TB2H5-B A 44.513 15.801 1.088 0.368 0.245 0.268 0.282 0.296 TB2H5-C A 44.488 24.289	B 41.267 11.129 0.864 0.412 0.369 0.295 0.308 0.284 NaCl (B 44.227 15.676 1.135 0.413 0.262 0.286 0.302 0.283 NaCl (B 44.747 23.974	C 40.662 10.835 0.829 0.351 0.358 0.364 0.325 0.285 Ib/yd³ C 43.766 15.918 1.161 0.405 0.257 0.240 0.319 0.291 Ib/yd³ C 44.789 23.574	40.996 11.026 0.845 0.374 0.357 0.341 0.294 AVG 44.169 15.798 1.128 0.395 0.255 0.265 0.301 0.290 AVG 44.675 23.946
Depth (in) 0.250 0.500 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (in) 0.250 0.500 0.750 1.000 1.250 1.500 1.500 1.750 2.000 Sample Depth (in) 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth 0.250 0.500 0.550 0.500 0.750 1.500	A 41.059 11.113 0.843 0.360 0.344 0.365 0.302 0.313 TB2H5-B A 44.513 15.801 1.088 0.368 0.245 0.268 0.282 0.296 TB2H5-C A 44.488 24.289 3.251	B 41.267 11.129 0.864 0.412 0.369 0.295 0.308 0.284 NaCl (B 44.227 15.676 1.135 0.413 0.262 0.286 0.302 0.283 NaCl (B 44.747 23.974 3.263	C 40.662 10.835 0.829 0.351 0.358 0.364 0.325 0.285 Ib/yd³) C 43.766 15.918 1.161 0.405 0.257 0.240 0.319 0.291 Ib/yd³) C 44.789 23.574 3.287	40.996 11.026 0.845 0.374 0.357 0.341 0.294 AVG 44.169 15.798 1.128 0.395 0.255 0.265 0.301 0.290 AVG 44.675 23.946 3.267
Depth (in) 0.250 0.500 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (in) 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth 0.250 0.500 0.750 1.000 0.250 0.500 0.750 1.000	A 41.059 11.113 0.843 0.360 0.344 0.365 0.302 0.313 TB2H5-B A 44.513 15.801 1.088 0.368 0.245 0.268 0.282 0.296 TB2H5-C A 44.488 24.289 3.251 0.509	B 41.267 11.129 0.864 0.412 0.369 0.295 0.308 0.284 MaCl (B 44.227 15.676 1.135 0.413 0.262 0.286 0.302 0.283 MaCl (B 44.747 23.974 3.263 0.508	C 40.662 10.835 0.829 0.351 0.358 0.364 0.325 0.285 Ib/yd³ C 43.766 15.918 1.161 0.405 0.257 0.240 0.319 0.291 Ib/yd³ C 44.789 23.574 3.287 0.545	40.996 11.026 0.845 0.374 0.357 0.341 0.294 AVG 44.169 15.798 1.128 0.295 0.255 0.265 0.301 0.290 AVG 44.675 23.946 3.267 0.521
Depth (in) 0.250 0.500 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (in) 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth 0.250 0.500 0.750 1.000 1.750 2.000 Sample Depth 0.250 0.500 0.750 1.000 1.250 1.000 0.750 1.000 1.250 1.000	A 41.059 11.113 0.843 0.360 0.344 0.360 0.313 TB2H5-B A 44.513 15.801 1.088 0.368 0.245 0.268 0.296 TB2H5-C A 44.488 24.289 3.251 0.509 0.378	B 41.267 11.129 0.864 0.412 0.369 0.295 0.308 0.284 NaCl (B 44.227 15.676 1.135 0.413 0.262 0.286 0.302 0.283 NaCl (B 44.747 23.974 3.263 0.508 0.413	C 40.662 10.835 0.829 0.351 0.358 0.364 0.325 0.285 0.285 Ib/yd³ C 43.766 15.918 1.161 0.405 0.257 0.240 0.319 0.291 Ib/yd³ C 44.789 23.574 3.287 0.545 0.395	40.996 11.026 0.845 0.374 0.357 0.341 0.312 0.294 AVG 44.169 15.798 1.128 0.395 0.255 0.265 0.301 0.290 AVG 44.675 23.946 3.267 0.521 0.395
Depth (in) 0.250 0.500 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (in) 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth 0.250 0.500 0.750 1.000 1.750 2.000 Sample Depth 0.250 0.500 0.750 1.000 1.250 1.000 1.250 1.500	A 41.059 11.113 0.843 0.360 0.344 0.365 0.302 0.313 TB2H5-B A 44.513 15.801 1.088 0.366 0.245 0.268 0.296 TB2H5-C A 44.488 24.289 3.251 0.509 0.378 0.311	B 41.267 11.129 0.864 0.412 0.369 0.295 0.308 0.284 NaCl (B 44.227 15.676 1.135 0.413 0.262 0.286 0.302 0.283 NaCl (B 44.747 23.974 3.263 0.508 0.413 0.325	C 40.662 10.835 0.829 0.351 0.358 0.364 0.325 0.285 0.285 Ib/yd³) C 43.766 15.918 1.161 0.405 0.257 0.240 0.319 0.291 Ib/yd³) C 44.789 23.574 3.287 0.545 0.395 0.305	40.996 11.026 0.845 0.374 0.357 0.341 0.294 AVG 44.169 15.798 1.128 0.395 0.255 0.265 0.301 0.290 AVG 44.675 23.946 3.267 0.521 0.395 0.314
Depth (in) 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth 0.250 0.500 0.750 1.000 1.250 1.500 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth 0.250 0.500 0.750 1.000 1.250 1.500 1.250 1.500 1.250 1.500 1.500 1.750	A 41.059 11.113 0.843 0.360 0.344 0.365 0.302 0.313 TB2H5-B A 44.513 15.801 1.088 0.368 0.245 0.268 0.296 TB2H5-C A 44.488 24.289 3.251 0.509 0.378 0.311 0.300	B 41.267 11.129 0.864 0.412 0.369 0.295 0.308 0.284 MaCI (B 44.227 15.676 1.135 0.413 0.262 0.286 0.302 0.283 MaCI (B 44.747 23.974 3.263 0.508 0.413 0.325 0.329	C 40.662 10.835 0.829 0.351 0.358 0.364 0.325 0.285 Ib/yd³) C 43.766 15.918 1.161 0.405 0.257 0.240 0.319 0.291 Ib/yd³) C 44.789 23.574 3.287 0.395 0.305 0.338	40.996 11.026 0.845 0.374 0.357 0.341 0.294 AVG 44.169 15.798 1.128 0.395 0.255 0.265 0.301 0.290 AVG 44.675 23.946 3.267 0.321 0.395 0.314 0.322
Depth (in) 0.250 0.500 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (in) 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth 0.250 0.500 0.750 1.000 1.750 2.000 Sample Depth 0.250 0.500 0.750 1.000 1.250 1.000 1.250 1.500	A 41.059 11.113 0.843 0.360 0.344 0.365 0.302 0.313 TB2H5-B A 44.513 15.801 1.088 0.366 0.245 0.268 0.296 TB2H5-C A 44.488 24.289 3.251 0.509 0.378 0.311	B 41.267 11.129 0.864 0.412 0.369 0.295 0.308 0.284 NaCl (B 44.227 15.676 1.135 0.413 0.262 0.286 0.302 0.283 NaCl (B 44.747 23.974 3.263 0.508 0.413 0.325	C 40.662 10.835 0.829 0.351 0.358 0.364 0.325 0.285 0.285 Ib/yd³) C 43.766 15.918 1.161 0.405 0.257 0.240 0.319 0.291 Ib/yd³) C 44.789 23.574 3.287 0.545 0.395 0.305	40.996 11.026 0.845 0.374 0.357 0.341 0.312 0.294 AVG 44.169 15.798 1.128 0.395 0.255 0.265 0.301 0.290 AVG 44.675 23.946 3.267 0.521 0.395 0.314


•	TB3H5-A			
	г Бэпэ-А			
Depth (in)-		NaCl (
,	Α	В	C	AVG
0.250	48.740	48.296	48.296	48.444
0.500	26.484	26.335	26.166	26.328
0.750	7.104	6.923	6.931	6.986
1.000	0.591	0.577	0.555	0.574
1.250	0.268	0.290	0.243	0.267
1.500	0.305	0.304	0.312	0.307
1.750	0.240	0.252	0.238	0.243
2.000	0.214	0.204	0.211	0.210
Sample	ТВЗН5-В			
Depth (in)		NaCl (
• • • •	Α	В	C	AVG
0.250	53.310	53.029	53.621	53.320
0.500	28.117	28.237	27.458	27.937
0.750	10.627	10.628	10.513	10.589
1.000	1.603	1.575	1.575	1.584
1.250	0.626	0.635	0.666	0.642
1.500	0.527	0.518	0.533	0.526
1.750	0.401	0.415	0.401	0.406
2.000	0.331	0.319	0.308	0.319
Sample	ТВЗН5-С			
	120110 0	NaCl (lb/yd³)	
Depth (in)	Α	В	С	AVG
0.250	49.810	49.909	50.321	50.013
0.500	4.356	4.331	4.018	4.235
0.750	18.234	18.220	18.319	18.258
1.000	0.471	0.472	0.464	0.469
1.250	0.165	0.174	0.194	0.178
1.500	0.156	0.144	0.148	0.149
1.750	0.148	0.125	0.132	0.135
2.000	0.143	0.136	0.130	0.136
Sample	TB4H5-A			
Depth (in)	•	NaCl (AV/0
	A	B	<u>C</u>	AVG
0.250	48.932	49.091	48.646	48.890
0.500	27.394	27.164	26.695	27.084
0.750	4.698	4.965	4.918	4.860
1 0 0 0	4.386	4.131	4.006	4 1 7 4
1.000	1.500	1.1.0.1		4.174
1.000 1.250	0.173	0.175	0.175	4.174 0.174
			0.175 0.156	
1.250 1.500	0.173 0.164	0.175 0.170	0.156	0.174 0.163
1.250 1.500 1.750	0.173 0.164 0.192	0.175 0.170 0.191	0.156 0.174	0.174 0.163 0.186
1.250 1.500 1.750 2.000	0.173 0.164 0.192 0.398	0.175 0.170	0.156	0.174 0.163
1.250 1.500 1.750 2.000 Sample	0.173 0.164 0.192	0.175 0.170 0.191 0.398	0.156 0.174 0.429	0.174 0.163 0.186
1.250 1.500 1.750 2.000	0.173 0.164 0.192 0.398	0.175 0.170 0.191	0.156 0.174 0.429	0.174 0.163 0.186
1.250 1.500 1.750 2.000 Sample	0.173 0.164 0.192 0.398 TB4H5-B	0.175 0.170 0.191 0.398 NaCl (B	0.156 0.174 0.429 Ib/yd ³) C	0.174 0.163 0.186 0.408
1.250 1.500 1.750 2.000 Sample Depth (in)·	0.173 0.164 0.192 0.398 TB4H5-B A 50.458	0.175 0.170 0.191 0.398 NaCl (B 50.537	0.156 0.174 0.429 Ib/yd³) <u>C</u> 50.251	0.174 0.163 0.186 0.408 AVG 50.415
1.250 1.500 1.750 2.000 Sample Depth (in) 0.250 0.500	0.173 0.164 0.192 0.398 TB4H5-B A 50.458 24.258	0.175 0.170 0.191 0.398 NaCl (B 50.537 24.592	0.156 0.174 0.429 Ib/yd³) C 50.251 24.683	0.174 0.163 0.186 0.408 AVG 50.415 24.511
1.250 1.500 1.750 2.000 Sample Depth (in)· 0.250 0.500 0.750	0.173 0.164 0.192 0.398 TB4H5-B A 50.458 24.258 6.473	0.175 0.170 0.191 0.398 NaCl (B 50.537 24.592 6.632	0.156 0.174 0.429 Ib/yd³) C 50.251 24.683 6.648	0.174 0.163 0.186 0.408 AVG 50.415 24.511 6.584
1.250 1.500 1.750 2.000 Sample Depth (in) 0.250 0.500 0.750 1.000	0.173 0.164 0.192 0.398 TB4H5-B A 50.458 24.258 6.473 0.330	0.175 0.170 0.191 0.398 NaCl (B 50.537 24.592 6.632 0.381	0.156 0.174 0.429 b/yd³) C 50.251 24.683 6.648 0.398	0.174 0.163 0.186 0.408 AVG 50.415 24.511 6.584 0.370
1.250 1.500 1.750 2.000 Sample Depth (in) 0.250 0.500 0.750 1.000 1.250	0.173 0.164 0.192 0.398 TB4H5-B 6 50.458 24.258 6.473 0.330 0.161	0.175 0.170 0.191 0.398 NaCl (B 50.537 24.592 6.632 0.381 0.211	0.156 0.174 0.429 Ib/yd³) C 50.251 24.683 6.648 0.398 0.216	0.174 0.163 0.186 0.408 AVG 50.415 24.511 6.584 0.370 0.196
1.250 1.500 1.750 2.000 Sample Depth (in) 0.250 0.500 0.750 1.000 1.250 1.500	0.173 0.164 0.192 0.398 TB4H5-B 6 50.458 24.258 6.473 0.330 0.161 0.144	0.175 0.170 0.191 0.398 NaCl (B 50.537 24.592 6.632 0.381 0.211 0.190	0.156 0.174 0.429 b/yd³) C 50.251 24.683 6.648 0.398 0.216 0.198	0.174 0.163 0.186 0.408 AVG 50.415 24.511 6.584 0.370 0.196 0.177
1.250 1.500 1.750 2.000 Sample Depth (in) 0.250 0.750 1.000 1.250 1.500 1.750	0.173 0.164 0.192 0.398 TB4H5-B A 5 0.458 24.258 6.473 0.330 0.161 0.144 0.184	0.175 0.170 0.191 0.398 NaCl (B 50.537 24.592 6.632 0.381 0.211 0.190 0.176	0.156 0.174 0.429 b/yd³) C 50.251 24.683 6.648 0.398 0.216 0.198 0.175	0.174 0.163 0.186 0.408 AVG 50.415 24.511 6.584 0.370 0.196 0.177 0.178
1.250 1.500 1.750 2.000 Sample Depth (in) 0.250 0.500 0.750 1.000 1.250 1.500	0.173 0.164 0.192 0.398 TB4H5-B 6 50.458 24.258 6.473 0.330 0.161 0.144	0.175 0.170 0.191 0.398 NaCl (B 50.537 24.592 6.632 0.381 0.211 0.190	0.156 0.174 0.429 b/yd³) C 50.251 24.683 6.648 0.398 0.216 0.198	0.174 0.163 0.186 0.408 AVG 50.415 24.511 6.584 0.370 0.196
1.250 1.500 1.750 2.000 Sample Depth (in)- 0.250 0.500 0.750 1.000 1.250 1.750 2.000	0.173 0.164 0.192 0.398 TB4H5-B A 5 0.458 24.258 6.473 0.330 0.161 0.144 0.184	0.175 0.170 0.191 0.398 NaCl (B 50.537 24.592 6.632 0.381 0.211 0.190 0.176 0.155	0.156 0.174 0.429 Ib/yd³) C 50.251 24.683 6.648 0.398 0.216 0.198 0.175 0.174	0.174 0.163 0.186 0.408 AVG 50.415 24.511 6.584 0.370 0.196 0.177 0.178
1.250 1.500 1.750 2.000 Sample Depth (in)- 0.250 0.500 0.750 1.000 1.250 1.750 2.000	0.173 0.164 0.192 0.398 TB4H5-B A 50.458 24.258 6.473 0.330 0.161 0.144 0.184 0.166 TB4H5-C	0.175 0.170 0.191 0.398 NaCl (B 50.537 24.592 6.632 0.381 0.211 0.190 0.176 0.155 NaCl (0.156 0.174 0.429 Ib/yd³) C 50.251 24.683 6.648 0.398 0.216 0.198 0.175 0.174 Ib/yd³)	0.174 0.163 0.186 0.408 AVG 50.415 24.511 6.584 0.370 0.196 0.177 0.178 0.165
1.250 1.500 1.750 2.000 Sample Depth (in)- 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (in)-	0.173 0.164 0.192 0.398 TB4H5-B A 50.458 24.258 6.473 0.330 0.161 0.144 0.184 0.166 TB4H5-C A	0.175 0.170 0.191 0.398 NaCl (B 50.537 24.592 6.632 0.381 0.211 0.190 0.176 0.155 NaCl (B	0.156 0.174 0.429 Ib/yd³) C 50.251 24.683 6.648 0.398 0.216 0.198 0.175 0.174 Ib/yd³) C	0.174 0.163 0.186 0.408 AVG 50.415 24.511 6.584 0.370 0.196 0.177 0.178 0.165
1.250 1.500 1.750 2.000 Sample Depth (in)- 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (in)- 0.250	0.173 0.164 0.192 0.398 TB4H5-B A 50.458 24.258 6.473 0.330 0.161 0.144 0.166 TB4H5-C A 48.528	0.175 0.170 0.191 0.398 NaCl (B 50.537 24.592 6.632 0.381 0.211 0.190 0.176 0.155 NaCl (B 48264	0.156 0.174 0.429 Ib/yd³) C 50.251 24.683 6.648 0.398 0.216 0.198 0.175 0.174 Ib/yd³) C 48.290	0.174 0.163 0.186 0.408 AVG 50.415 24.511 6.584 0.370 0.196 0.177 0.178 0.165 AVG 48.361
1.250 1.500 1.750 2.000 Sample Depth (in)- 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (in)- 0.250 0.500	0.173 0.164 0.192 0.398 TB4H5-B A 50.458 24.258 6.473 0.330 0.161 0.144 0.166 TB4H5-C A 48.528 22.409	0.175 0.170 0.191 0.398 NaCl (B 50.537 24.592 6.632 0.381 0.211 0.190 0.176 0.155 NaCl (B 48264 21.985	0.156 0.174 0.429 Ib/yd³) C 50.251 24.683 6.648 0.398 0.216 0.198 0.175 0.174 Ib/yd³) C 48.290 21.796	0.174 0.163 0.186 0.408 50.415 24.511 6.584 0.370 0.196 0.177 0.178 0.165 AVG 48.361 22.063
1.250 1.500 1.750 2.000 Sample Depth (in) 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (in) 0.250 0.500 0.750 0.500 0.500 0.750 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.750 0.500 0.750 0.500 0.750 0.500 0.750 0.500 0.750 0.500 0.750 0.500 0.750 0.500 0.750 0.750 0.500 0.75	0.173 0.164 0.192 0.398 TB4H5-B A 50.458 24.258 6.473 0.330 0.161 0.144 0.184 0.166 TB4H5-C A 48.528 22.409 6.845	0.175 0.170 0.191 0.398 NaCl (B 50.537 24.592 6.632 0.381 0.211 0.190 0.176 0.155 NaCl (B 48264 21.985 6.812	0.156 0.174 0.429 Ib/yd³) C 50.251 24.683 6.648 0.398 0.216 0.198 0.175 0.174 Ib/yd³) C 48.290 21.796 6.731	0.174 0.163 0.186 0.408 50.415 24.511 6.584 0.370 0.196 0.177 0.178 0.165 AVG 48.361 22.063 6.796
1.250 1.500 1.750 2.000 Sample Depth (in) 0.250 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (in) 0.250 0.500 0.750 1.000 1.750 2.000	0.173 0.164 0.192 0.398 TB4H5-B A 50.458 24.258 6.473 0.330 0.161 0.144 0.184 0.166 TB4H5-C A 48.528 22.409 6.845 0.798	0.175 0.170 0.191 0.398 NaCl (B 50.537 24.592 6.632 0.381 0.211 0.190 0.176 0.155 NaCl (B 48.264 21.985 6.812 0.823	0.156 0.174 0.429 b/yd³) C 50.251 24.683 6.648 0.398 0.216 0.198 0.175 0.174 b/yd³) C 48.290 21.796 6.731 0.816	0.174 0.163 0.186 0.408 50.415 24.511 6.584 0.370 0.196 0.177 0.178 0.165 AVG 48.361 22.063 6.796 0.812
1.250 1.500 1.750 2.000 Sample Depth (in) 0.250 0.500 0.750 1.000 1.250 1.500 Sample Depth (in) 0.250 0.250 0.500 0.750 1.000 1.250 0.750 1.000 1.250 0.25	0.173 0.164 0.192 0.398 TB4H5-B A 50.458 24.258 6.473 0.330 0.161 0.144 0.166 TB4H5-C A 48.528 22.409 6.845 0.798 0.216	0.175 0.170 0.191 0.398 NaCl (B 50.537 24.592 6.632 0.381 0.211 0.190 0.176 0.155 NaCl (B 48264 21.985 6.812	0.156 0.174 0.429 Ib/yd³) C 50.251 24.683 6.648 0.398 0.216 0.198 0.175 0.174 Ib/yd³) C 48.290 21.796 6.731 0.816 0.222	0.174 0.163 0.186 0.408 50.415 24.511 6.584 0.370 0.196 0.177 0.178 0.165 AVG 48.361 22.063 6.796
1.250 1.500 1.750 2.000 Sample Depth (in) 0.250 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (in) 0.250 0.500 0.750 1.000 1.750 2.000	0.173 0.164 0.192 0.398 TB4H5-B A 50.458 24.258 6.473 0.330 0.161 0.144 0.184 0.166 TB4H5-C A 48.528 22.409 6.845 0.798	0.175 0.170 0.191 0.398 NaCl (B 50.537 24.592 6.632 0.381 0.211 0.190 0.176 0.155 NaCl (B 48.264 21.985 6.812 0.823	0.156 0.174 0.429 b/yd³) C 50.251 24.683 6.648 0.398 0.216 0.198 0.175 0.174 b/yd³) C 48.290 21.796 6.731 0.816	0.174 0.163 0.186 0.408 50.415 24.511 6.584 0.370 0.196 0.177 0.178 0.165 AVG 48.361 22.063 6.796 0.812
1.250 1.500 1.750 2.000 Sample Depth (in) 0.250 0.500 0.750 1.000 1.250 1.500 Sample Depth (in) 0.250 0.250 0.500 0.750 1.000 1.250 0.750 1.500 1.250 0.25	0.173 0.164 0.192 0.398 TB4H5-B A 50.458 24.258 6.473 0.330 0.161 0.144 0.166 TB4H5-C A 48.528 22.409 6.845 0.798 0.216	0.175 0.170 0.191 0.398 NaCl (B 50.537 24.592 6.632 0.381 0.211 0.176 0.155 NaCl (B 48264 21.985 6.812 0.823 0.205	0.156 0.174 0.429 Ib/yd³) C 50.251 24.683 6.648 0.398 0.216 0.198 0.175 0.174 Ib/yd³) C 48.290 21.796 6.731 0.816 0.222	0.174 0.163 0.186 0.408 50.415 24.511 6.584 0.370 0.196 0.177 0.178 0.165 AVG 48.361 22.063 6.796 0.812 0.214

Sample	TB5H5-A			
Depth (i	in)	NaCl (
	ΎΑ	B	C	AVG
0.250	40.469 18.064	40.346 18.016	40.096 18.005	40.304 18.028
0.300	16.801	16.792	16.842	16.812
1.000	0.269	0.272	0.286	0.276
1.250	0.230	0.248	0.237	0.238
1.500	0.394	0.41.	0.419	0.408
1.750	0.245	0.261	0.243	0.250
2.000	0.201	0.219	0.203	0.208
Sample	TB5H5-B			
Depth (i	in)	NaCl (
0.250	45.947	B 45.765	C 45.979	AVG 45.897
0.250	13.282	13.538	13.258	13.359
0.750	0.874	0.898	0.897	0.890
1.000	0.273	0.203	0.259	0.245
1.250	0.285	0.221	0.282	0.263
1.500	0.315	0.308	0.304	0.309
1.750	0.234	0.247	0.252	0.244
2.000	0.284	0.284	0.285	0.284
Sample	TB5H5-C			
· · ·		NaCl (lb/yd ³)	
Depth (i	in) A	В	C C	AVG
0.250	42.851	43.344	43.464	43.220
0.500	15.926	15.979	16.147	16.017
0.750	1.347	1.321	1.345	1.338
1.000	0.895	0.962	0.970	0.942
1.250	0.411	0.421	0.427	0.420
1.500	0.325	0.321	0.324	0.323
1.750	0.235	0.237	0.248	0.240
2.000	0.251	0.269	0.302	0.274
Sample	TB6H5-A			
· · ·	in)	NaCl (AVG
Depth (i	in) <u> </u>	В	С	AVG 39 144
Depth (i	in) <u>A</u> 39.239	B 38.925	C 39.267	39.144
Depth (i	in) <u> </u>	В	С	
Depth (i	in) A 39.239 22.705	B 38.925 22.763	C 39.267 22.782	39.144 22.750
Depth (i 0.250 0.500 0.750	A 39.239 22.705 3.074	B 38.925 22.763 3.112	C 39.267 22.782 2.994	39.144 22.750 3.060
Depth (i 0.250 0.500 0.750 1.000	in) A 39.239 22.705 3.074 0.378	B 38.925 22.763 3.112 0.369	C 39.267 22.782 2.994 0.363	39.144 22.750 3.060 0.370
Depth (i 0.250 0.500 0.750 1.000 1.250 1.500 1.750	A 39.239 22.705 3.074 0.378 0.202 0.574 0.214	B 38.925 22.763 3.112 0.369 0.140 0.558 0.221	C 39.267 22.782 2.994 0.363 0.187 0.560 0.204	39.144 22.750 3.060 0.370 0.176 0.564 0.213
Depth (i 0.250 0.500 0.750 1.000 1.250 1.500	A 39.239 22.705 3.074 0.378 0.202 0.574	B 38.925 22.763 3.112 0.369 0.140 0.558	C 39.267 22.782 2.994 0.363 0.187 0.560	39.144 22.750 3.060 0.370 0.176 0.564
Depth (i 0.250 0.500 0.750 1.000 1.250 1.500 1.750	A 39.239 22.705 3.074 0.378 0.202 0.574 0.214 0.564	B 38.925 22.763 3.112 0.369 0.140 0.558 0.221 0.564	C 39.267 22.782 2.994 0.363 0.187 0.560 0.204 0.586	39.144 22.750 3.060 0.370 0.176 0.564 0.213
Depth (i 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample	A 39.239 22.705 3.074 0.378 0.202 0.574 0.214 0.564 TB6H5-B	B 38.925 22.763 3.112 0.369 0.140 0.558 0.221 0.564 NaCl (C 39.267 22.782 2.994 0.363 0.187 0.560 0.204 0.586 Ib/yd ³	39.144 22.750 3.060 0.370 0.176 0.564 0.213 0.571
Depth (i 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (i	in) <u>A</u> <u>39.239</u> 22.705 <u>3.074</u> 0.378 0.202 0.574 0.214 0.564 TB6H5-B in) <u>A</u>	B 38.925 22.763 3.112 0.369 0.140 0.558 0.221 0.564 NaCl (B	C 39.267 22.782 2.994 0.363 0.187 0.560 0.204 0.586 Ib/yd ³) C	39.144 22.750 3.060 0.370 0.176 0.564 0.213 0.571
Depth (i 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (i 0.250	A 39.239 22.705 3.074 0.378 0.202 0.574 0.214 0.564 TB6H5-B in) A 39.410	B 38.925 22.763 3.112 0.369 0.140 0.558 0.221 0.564 NaCl (B 39.298	C 39.267 22.782 2.994 0.363 0.187 0.560 0.204 0.586 Ib/yd ³) C 40.081	39.144 22.750 3.060 0.370 0.176 0.564 0.213 0.571 AVG 39.596
Depth (i 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (i 0.250 0.500	in) A 39.239 22.705 3.074 0.378 0.202 0.574 0.214 0.564 TB6H5-B in) A 39.410 20.278	B 38.925 22.763 3.112 0.369 0.140 0.558 0.221 0.564 NaCl (B 39.298 20.030	C 39.267 22.782 2.994 0.363 0.187 0.560 0.204 0.586 Ib/yd ³) C 40.081 19.870	39.144 22.750 3.060 0.370 0.176 0.564 0.213 0.571 AVG 39.596 20.059
Depth (i 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (i 0.250 0.500 0.750	in) A 39.239 22.705 3.074 0.378 0.202 0.574 0.214 0.564 TB6H5-B in) A 39.410 20.278 1.416	B 38.925 22.763 3.112 0.369 0.140 0.558 0.221 0.564 NaCl (B 39.298 20.030 1.440	C 39,267 22,782 2,994 0,363 0,187 0,560 0,204 0,586 Ib/yd³ C 40,081 19,870 1,427	39.144 22.750 3.060 0.370 0.176 0.564 0.213 0.571 AVG 39.596 20.059 1.428
Depth (i 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (i 0.250 0.500 0.750 1.000	A 39.239 22.705 3.074 0.378 0.202 0.574 0.214 0.564 TB6H5-B in) A 39.410 20.278 1.416 0.225	B 38.925 22.763 3.112 0.369 0.140 0.558 0.221 0.564 NaCl (B 39.298 20.030 1.440 0.207	C 39.267 22.782 2.994 0.363 0.187 0.560 0.204 0.586 Ib/yd ³) C 40.081 19.870	39.144 22.750 3.060 0.370 0.176 0.564 0.213 0.571 AVG 39.596 20.059
Depth (i 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (i 0.250 0.500 0.750	in) A 39.239 22.705 3.074 0.378 0.202 0.574 0.214 0.564 TB6H5-B in) A 39.410 20.278 1.416	B 38.925 22.763 3.112 0.369 0.140 0.558 0.221 0.564 NaCl (B 39.298 20.030 1.440	C 39,267 22,782 2,994 0.363 0.187 0.560 0.204 0.586 Ib/yd³) C 40.081 19.870 1.427 0.214	39.144 22.750 3.060 0.370 0.176 0.564 0.213 0.571 AVG 39.596 20.059 1.428 0.215
Depth (i 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (i 0.250 0.500 0.750 1.000 1.250	A 39.239 22.705 3.074 0.378 0.202 0.574 0.214 0.564 TB6H5-B in) A 39.410 20.278 1.416 0.225 0.177	B 38.925 22.763 3.112 0.369 0.140 0.558 0.221 0.564 NaCl (B 39.298 20.030 1.440 0.207 0.192	C 39.267 22.782 2.994 0.363 0.187 0.560 0.204 0.586 Ib/yd³) C 40.081 19.870 1.427 0.214 0.183	39.144 22.750 3.060 0.370 0.176 0.564 0.213 0.571 AVG 39.596 20.059 1.428 0.215 0.184
Depth (i 0.250 0.500 0.750 1.250 1.250 1.500 1.750 2.000 Sample Depth (i 0.250 0.500 0.750 1.000 1.250 1.250	A 39.239 22.705 3.074 0.378 0.202 0.574 0.214 0.564 TB6H5-B in) A 39.410 20.278 1.416 0.225 0.177 0.162	B 38.925 22.763 3.112 0.369 0.140 0.558 0.221 0.564 NaCl (B 39.298 20.030 1.440 0.207 0.192 0.162	C 39.267 22.782 2.994 0.363 0.187 0.560 0.204 0.586 Ib/yd³) C 40.081 19.870 1.427 0.214 0.183 0.166	39.144 22.750 3.060 0.370 0.176 0.564 0.213 0.571 AVG 39.596 20.059 1.428 0.215 0.184 0.163
Depth (i 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (i 0.250 0.500 0.750 1.000 1.250 1.500 1.250 1.500 1.750 2.000	A 39.239 22.705 3.074 0.378 0.202 0.574 0.214 0.564 TB6H5-B in) A 39.410 20.278 1.416 0.225 0.177 0.162 0.153 0.187	B 38.925 22.763 3.112 0.369 0.140 0.558 0.221 0.564 NaCl (B 39.298 20.030 1.440 0.207 0.192 0.162 0.154	C 39.267 22.782 2.994 0.363 0.187 0.560 0.204 0.586 Ib/yd³) C 40.081 19.870 1.427 0.214 0.183 0.166 0.145	39.144 22.750 3.060 0.370 0.176 0.564 0.213 0.571 AVG 39.596 20.059 1.428 0.215 0.184 0.163 0.151
Depth (i) 0.250 0.500 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (i) 0.250 0.500 0.500 0.500 0.500 0.500 1.000 1.250 1.500 1.750 2.000 Sample	A 39.239 22.705 3.074 0.378 0.202 0.574 0.214 0.564 TB6H5-B in) A 39.410 20.278 1.416 0.225 0.177 0.162 0.153 0.187 TB6H5-C	B 38.925 22.763 3.112 0.369 0.140 0.558 0.221 0.564 NaCl (B 39.298 20.030 1.440 0.207 0.192 0.162 0.154	C 39,267 22,782 2,994 0,363 0,187 0,560 0,204 0,586 Ib/yd³) C 40,081 19,870 1,427 0,214 0,183 0,166 0,145 0,196	39.144 22.750 3.060 0.370 0.176 0.564 0.213 0.571 AVG 39.596 20.059 1.428 0.215 0.184 0.163 0.151
Depth (i 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (i 0.250 0.500 0.750 1.000 1.250 1.500 1.250 1.500 1.750 2.000 Sample Depth (i	A 39.239 22.705 3.074 0.378 0.202 0.574 0.214 0.564 TB6H5-B in) A 39.410 20.278 1.416 0.225 0.177 0.162 0.153 0.187 TB6H5-C in)	B 38.925 22.763 3.112 0.369 0.140 0.558 0.221 0.564 MaCl (B 39.298 20.030 1.440 0.207 0.192 0.162 0.154 0.186 MaCl (B	C 39,267 22,782 2,994 0,363 0,187 0,560 0,204 0,586 Ib/yd³ C Ib/yd³ C	39.144 22.750 3.060 0.370 0.176 0.564 0.213 0.571 AVG 39.596 20.059 1.428 0.215 0.184 0.163 0.151
Depth (i) 0.250 0.500 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (i) 0.250 0.500 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (i) 0.250 Sample Depth (i)	A 39.239 22.705 3.074 0.378 0.202 0.574 0.214 0.564 TB6H5-B in) A 39.410 20.278 1.416 0.225 0.177 0.162 0.153 0.187 TB6H5-C in) A	B 38.925 22.763 3.112 0.369 0.140 0.558 0.221 0.564 NaCl (B 39.298 20.030 1.440 0.207 0.192 0.162 0.154 0.186 NaCl (B 44.360	C 39,267 22,782 2.994 0.363 0.187 0.560 0.204 0.586 Ib/yd³) C 40.081 19.870 1.427 0.214 0.183 0.166 0.145 0.196 Ib/yd³) C 43.897	39.144 22.750 3.060 0.370 0.176 0.564 0.213 0.571 AVG 39.596 20.059 1.428 0.215 0.184 0.163 0.151 0.190 AVG 44.170
Depth (i 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (i 0.250 0.750 1.000 1.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (i 0.250 0.500	A 39.239 22.705 3.074 0.378 0.202 0.574 0.214 0.564 TB6H5-B in) A 39.410 20.278 1.416 0.225 0.177 0.162 0.153 0.187 TB6H5-C in) A 44.254 17.177	B 38.925 22.763 3.112 0.369 0.140 0.558 0.221 0.564 NaCl (B 39.298 20.030 1.440 0.207 0.192 0.162 0.154 0.186 NaCl (B 44.360 17.634	C 39.267 22.782 2.994 0.363 0.187 0.560 0.204 0.586 Ib/yd³) C 40.081 19.870 1.427 0.214 0.183 0.166 0.145 0.196 Ib/yd³) C 43.897 17.777	39.144 22.750 3.060 0.370 0.176 0.564 0.213 0.571 AVG 39.596 20.059 1.428 0.215 0.184 0.163 0.151 0.190 AVG 44.170 17.529
Depth (i 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (i 0.250 0.500 1.750 2.000 Sample Depth (i 0.250 0.500 0.500 0.500 0.500 0.500 0.750	A 39.239 22.705 3.074 0.378 0.202 0.574 0.214 0.564 TB6H5-B in) A 39.410 20.278 1.416 0.225 0.177 0.162 0.153 0.187 TB6H5-C in) A 44.254 17.177 1.218	B 38.925 22.763 3.112 0.369 0.140 0.558 0.221 0.564 NaCl (B 39.298 20.030 1.440 0.207 0.192 0.162 0.154 0.186 NaCl (B 44.360 17.634 1.215	C 39.267 22.782 2.994 0.363 0.187 0.560 0.204 0.586 Ib/yd³) C 40.081 19.870 1.427 0.214 0.183 0.166 0.145 0.196 Ib/yd³) C 43.897 17.777 1.241	39.144 22.750 3.060 0.370 0.176 0.564 0.213 0.571 AVG 39.596 20.059 1.428 0.215 0.184 0.163 0.151 0.190 AVG 44.170 17.529 1.225
Depth (i 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (i 0.250 0.500 0.750 1.000 1.250 1.500 1.250 1.500 1.750 2.000 Sample Depth (i 0.250 0.500 0.750 1.000	A 39.239 22.705 3.074 0.378 0.202 0.574 0.214 0.564 TB6H5-B in) A 39.410 20.278 1.416 0.225 0.177 0.162 0.153 0.187 TB6H5-C in) A 44.254 17.177 1.218 0.315	B 38.925 22.763 3.112 0.369 0.140 0.558 0.221 0.564 NaCl (B 39.298 20.030 1.440 0.207 0.192 0.162 0.154 0.186 NaCl (B 44.360 17.634 1.215 0.307	C 39.267 22.782 2.994 0.363 0.187 0.560 0.204 0.586 Ib/yd³) C 40.081 19.870 1.427 0.214 0.183 0.166 0.145 0.196 Ib/yd³) C 43.897 17.777 1.241 0.302	39.144 22.750 3.060 0.370 0.176 0.564 0.213 0.571 AVG 39.596 20.059 1.428 0.215 0.184 0.163 0.151 0.190 AVG 44.170 17.529 1.225 0.308
Depth (i 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (i 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (i 0.250 0.500 0.750 1.000 1.250	A 39.239 22.705 3.074 0.378 0.202 0.574 0.214 0.564 TB6H5-B in) A 39.410 20.278 1.416 0.225 0.177 0.162 0.153 0.187 TB6H5-C in) A 44.254 17.177 1.218 0.315 0.209	B 38.925 22.763 3.112 0.369 0.140 0.558 0.221 0.564 NaCl (B 39.298 20.030 1.440 0.207 0.192 0.162 0.154 0.186 NaCl (B 44.360 17.634 1.215 0.307 0.224	C 39.267 22.782 2.994 0.363 0.187 0.560 0.204 0.586 Ib/yd³) C 40.081 19.870 1.427 0.214 0.183 0.166 0.145 0.196 Ib/yd³) C 43.897 17.777 1.241 0.302 0.204	39.144 22.750 3.060 0.370 0.176 0.564 0.213 0.571 AVG 39.596 20.059 1.428 0.215 0.184 0.163 0.151 0.190 AVG 44.170 17.529 1.225 0.308 0.212
Depth (i 0.250 0.500 0.750 1.000 1.250 0.500 0.750 2.000 Sample Depth (i 0.250 0.500 0.750 1.000 1.250 1.000 1.750 2.000 Sample Depth (i 0.255 0.500 0.750 0.500 0.750 1.000 1.250 0.500 0.750 1.000 1.250 0.500 0.550 0.500 0.550 0.500 0.550 0.500 0.550 0.500 0.550 0.500 0.5500 0.500 0.5500 0.500 0.5500 0.500 0.5500 0.500 0.55000 0.55000 0.55000 0.5500000000	A 39.239 22.705 3.074 0.378 0.202 0.574 0.214 0.564 TB6H5-B in) A 39.410 20.278 1.416 0.225 0.177 0.162 0.153 0.187 TB6H5-C in) A 44.254 17.177 1.218 0.315 0.209 0.226	B 38.925 22.763 3.112 0.369 0.140 0.558 0.221 0.564 NaCl (B 39.298 20.030 1.440 0.207 0.192 0.162 0.154 0.186 NaCl (B 44.360 17.634 1.215 0.307 0.224 0.173	C 39,267 22,782 2,994 0,363 0,187 0,560 0,204 0,586 Ib/yd³) C 40,081 19,870 1,427 0,214 0,183 0,166 0,145 0,196 Ib/yd³) C 43,897 17,777 1,241 0,302 0,204 0,181	39.144 22.750 3.060 0.370 0.176 0.564 0.213 0.571 AVG 39.596 20.059 1.428 0.215 0.184 0.163 0.151 0.190 AVG 44.170 17.529 1.225 0.308 0.212 0.193
Depth (i 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (i 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (i 0.250 0.500 0.750 1.000 1.250	A 39.239 22.705 3.074 0.378 0.202 0.574 0.214 0.564 TB6H5-B in) A 39.410 20.278 1.416 0.225 0.177 0.162 0.153 0.187 TB6H5-C in) A 44.254 17.177 1.218 0.315 0.209	B 38.925 22.763 3.112 0.369 0.140 0.558 0.221 0.564 NaCl (B 39.298 20.030 1.440 0.207 0.192 0.162 0.154 0.186 NaCl (B 44.360 17.634 1.215 0.307 0.224	C 39.267 22.782 2.994 0.363 0.187 0.560 0.204 0.586 Ib/yd³) C 40.081 19.870 1.427 0.214 0.183 0.166 0.145 0.196 Ib/yd³) C 43.897 17.777 1.241 0.302 0.204	39.144 22.750 3.060 0.370 0.176 0.564 0.213 0.571 AVG 39.596 20.059 1.428 0.215 0.184 0.163 0.151 0.190 AVG 44.170 17.529 1.225 0.308 0.212


Sample	TB7H5-A			
Depth (in	ı) <u> </u>	NaCl (
0.050	• A	B	C	AVG
0.250 0.500	38.776 15.885	39.079 16.648	38.620 16.620	38.825 16.384
0.300	2.617	2.606	2.676	2.633
1.000	0.438	0.509	0.501	0.483
1.250	0.438	0.309	0.301	0.485
1.500	0.235	0.366	0.347	0.288
1.750	0.532	0.556	0.562	0.555
2.000	0.530	0.530	0.526	0.528
2.000	0.528	0.551	0.520	0.528
Sample	TB7H5-B			
Depth (ir	n)	NaCl (lb/yd³)	
• •	ΎΑ	В	С	AVG
0.250	40.927	41.241	41.445	41.204
0.500	19.439	19.340	19.789	19.523
0.750	2.778	2.873	2.927	2.859
1.000	0.285	0.287	0.283	0.285
1.250	0.279	0.285	0.303	0.289
1.500	0.286	0.306	0.293	0.295
1.750	0.237	0.235	0.231	0.234
2.000	0.339	0.332	0.337	0.336
Sample	TB7H5-C			
Sample		NaCl (lb/yd ³)	
Depth (in	n) <u> </u>	В	C	AVG
0.250	44.154	44.725	44.811	44.563
0.500	21.347	21.551	20.830	21.243
0.750	2.828	3.044	3.032	2.968
1.000	0.353	0.351	0.358	0.354
1.250	0.252	0.243	0.228	0.241
1.500	0.234	0.293	0.224	0.250
1.750	0.294	0.287	0.297	0.293
2.000	0.394	0.408	0.415	0.406
Sample	TB8H5-A	NaCl (
Depth (in	1) <u> </u>		C	AVG
		в		AVG
0.250	42.016	в 41.348	42.089	41.818
		41.348	42.089	41.818
0.500	42.016 12.337	_	42.089 11.891	41.818 12.111
0.500 0.750	42.016 12.337 0.619	41.348 12.104 0.584	42.089 11.891 0.591	41.818 12.111 0.598
0.500 0.750 1.000	42.016 12.337 0.619 0.193	41.348 12.104 0.584 0.189	42.089 11.891 0.591 0.212	41.818 12.111 0.598 0.198
0.500 0.750 1.000 1.250	42.016 12.337 0.619 0.193 0.183	41.348 12.104 0.584 0.189 0.180	42.089 11.891 0.591 0.212 0.180	41.818 12.111 0.598 0.198 0.181
0.500 0.750 1.000 1.250 1.500	42.016 12.337 0.619 0.193 0.183 0.158	41.348 12.104 0.584 0.189 0.180 0.097	42.089 11.891 0.591 0.212 0.180 0.139	41.818 12.111 0.598 0.198 0.181 0.131
0.500 0.750 1.000 1.250 1.500 1.750	42.016 12.337 0.619 0.193 0.183 0.158 0.150	41.348 12.104 0.584 0.189 0.180 0.097 0.105	42.089 11.891 0.591 0.212 0.180 0.139 0.127	41.818 12.111 0.598 0.198 0.181 0.131 0.127
0.500 0.750 1.000 1.250 1.500	42.016 12.337 0.619 0.193 0.183 0.158	41.348 12.104 0.584 0.189 0.180 0.097	42.089 11.891 0.591 0.212 0.180 0.139	41.818 12.111 0.598 0.198 0.181 0.131
0.500 0.750 1.000 1.250 1.500 1.750	42.016 12.337 0.619 0.193 0.183 0.158 0.150	41.348 12.104 0.584 0.189 0.180 0.097 0.105 0.143	42.089 11.891 0.591 0.212 0.180 0.139 0.127 0.151	41.818 12.111 0.598 0.198 0.181 0.131 0.127
0.500 0.750 1.000 1.250 1.500 1.750 2.000	42.016 12.337 0.619 0.193 0.183 0.158 0.150 0.166 TB8H5-B	41.348 12.104 0.584 0.189 0.180 0.097 0.105 0.143	42.089 11.891 0.591 0.212 0.180 0.139 0.127 0.151	41.818 12.111 0.598 0.198 0.181 0.131 0.127 0.153
0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (irr	42.016 12.337 0.619 0.193 0.183 0.158 0.150 0.166 TB8H5-B	41.348 12.104 0.584 0.189 0.180 0.097 0.105 0.143 NaCl (B	42.089 11.891 0.591 0.212 0.180 0.139 0.127 0.151 Ib/yd ³) C	41.818 12.111 0.598 0.198 0.181 0.131 0.127 0.153 AVG
0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (irr 0.250	42.016 12.337 0.619 0.193 0.183 0.158 0.150 0.166 TB8H5-B D A 0.553	41.348 12.104 0.584 0.189 0.180 0.097 0.105 0.143 NaCl (B 0.578	42.089 11.891 0.591 0.212 0.180 0.139 0.127 0.151 Ib/yd ³) C 0.598	41.818 12.111 0.598 0.198 0.181 0.131 0.127 0.153 AVG 0.576
0.500 0.750 1.000 1.250 1.500 2.000 Sample Depth (ir 0.250 0.500	42.016 12.337 0.619 0.193 0.183 0.158 0.150 0.166 TB8H5-B 0) A 0.553 17.019	41.348 12.104 0.584 0.189 0.180 0.097 0.105 0.143 NaCl (B 0.578 16.907	42.089 11.891 0.591 0.212 0.180 0.139 0.127 0.151 Ib/yd³ C 0.598 16.791	41.818 12.111 0.598 0.198 0.181 0.131 0.127 0.153 AVG 0.576 16.906
0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (ir 0.250 0.500 0.750	42.016 12.337 0.619 0.193 0.183 0.158 0.150 0.166 TB8H5-B D A 0.553 17.019 3.597	41.348 12.104 0.584 0.189 0.180 0.097 0.105 0.143 NaCl (B 0.578 16.907 3.595	42.089 11.891 0.591 0.212 0.180 0.139 0.127 0.151 Ib/yd³) C 0.598 16.791 3.570	41.818 12.111 0.598 0.198 0.181 0.131 0.127 0.153 AVG 0.576 16.906 3.587
0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample 0.250 0.500 0.750 1.000	42.016 12.337 0.619 0.193 0.183 0.158 0.150 0.166 TB8H5-B D A 0.553 17.019 3.597 0.357	41.348 12.104 0.584 0.189 0.180 0.097 0.105 0.143 NaCl (B 0.578 16.907 3.595 0.356	42.089 11.891 0.591 0.212 0.180 0.139 0.127 0.151 Ib/yd³) C 0.598 16.791 3.570 0.378	41.818 12.111 0.598 0.198 0.181 0.131 0.127 0.153 AVG 0.576 16.906 3.587 0.364
0.500 0.750 1.000 1.250 1.500 2.000 Sample Depth (ir 0.250 0.500 0.750 1.000 1.250	42.016 12.337 0.619 0.193 0.183 0.158 0.150 0.166 TB8H5-B D A 0.553 17.019 3.597 0.357 0.183	41.348 12.104 0.584 0.189 0.180 0.097 0.105 0.143 NaCl (B 0.578 16.907 3.595 0.356 0.162	42.089 11.891 0.591 0.212 0.180 0.139 0.127 0.151 Ib/yd³) C 0.598 16.791 3.570 0.378 0.179	41.818 12.111 0.598 0.198 0.181 0.131 0.127 0.153 AVG 0.576 16.906 3.587 0.364 0.175
0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample 0.250 0.500 0.750 1.000 1.250 1.500	42.016 12.337 0.619 0.193 0.183 0.158 0.150 0.166 TB8H5-B 0.553 17.019 3.597 0.357 0.183 0.158	41.348 12.104 0.584 0.189 0.180 0.097 0.105 0.143 NaCl (B 0.578 16.907 3.595 0.356 0.162 0.176	42.089 11.891 0.591 0.212 0.180 0.139 0.127 0.151 Ib/yd³) C 0.598 16.791 3.570 0.378 0.179 0.126	41.818 12.111 0.598 0.198 0.181 0.131 0.127 0.153 AVG 0.576 16.906 3.587 0.364 0.175 0.153
0.500 0.750 1.000 1.250 1.500 2.000 Sample Depth (ir 0.250 0.500 0.750 1.000 1.250 1.500 1.500 1.750	42.016 12.337 0.619 0.193 0.183 0.158 0.150 0.166 TB8H5-B D A 0.553 17.019 3.597 0.357 0.183 0.158 0.158	41.348 12.104 0.584 0.189 0.180 0.097 0.105 0.143 NaCl (B 0.578 16.907 3.595 0.356 0.162 0.176 0.165	42.089 11.891 0.591 0.212 0.180 0.139 0.127 0.151 Ib/yd³) C 0.598 16.791 3.570 0.378 0.179 0.126 0.153	41.818 12.111 0.598 0.198 0.181 0.131 0.127 0.153 AVG 0.576 16.906 3.587 0.364 0.175 0.153 0.159
0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample 0.250 0.500 0.750 1.000 1.250 1.500	42.016 12.337 0.619 0.193 0.183 0.158 0.150 0.166 TB8H5-B 0.553 17.019 3.597 0.357 0.183 0.158	41.348 12.104 0.584 0.189 0.180 0.097 0.105 0.143 NaCl (B 0.578 16.907 3.595 0.356 0.162 0.176	42.089 11.891 0.591 0.212 0.180 0.139 0.127 0.151 Ib/yd³) C 0.598 16.791 3.570 0.378 0.179 0.126	41.818 12.111 0.598 0.198 0.181 0.131 0.127 0.153 AVG 0.576 16.906 3.587 0.364 0.175 0.153
0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (ir 0.250 0.500 0.750 1.000 1.250 1.500 1.500 1.750	42.016 12.337 0.619 0.193 0.183 0.158 0.150 0.166 TB8H5-B D A 0.553 17.019 3.597 0.357 0.183 0.158 0.158	41.348 12.104 0.584 0.189 0.180 0.097 0.105 0.143 NaCl (B 0.578 16.907 3.595 0.356 0.162 0.176 0.176	42.089 11.891 0.591 0.212 0.180 0.139 0.127 0.151 Ib/yd³ C 0.598 16.791 3.570 0.378 0.179 0.126 0.153 0.156	41.818 12.111 0.598 0.198 0.181 0.131 0.127 0.153 AVG 0.576 16.906 3.587 0.364 0.175 0.153 0.159
0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (ir 0.250 0.500 0.750 1.000 1.250 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500	42.016 12.337 0.619 0.193 0.183 0.158 0.150 0.166 TB8H5-B 0.553 17.019 3.597 0.357 0.183 0.158 0.158 0.158 TB8H5-C	41.348 12.104 0.584 0.189 0.180 0.097 0.105 0.143 NaCl (B 0.578 16.907 3.595 0.356 0.162 0.176 0.165 0.176 NaCl (42.089 11.891 0.591 0.212 0.180 0.139 0.127 0.151 Ib/yd³) C 0.598 16.791 3.570 0.378 0.179 0.126 0.153 0.156 Ib/yd³)	41.818 12.111 0.598 0.198 0.181 0.131 0.127 0.153 AVG 0.576 16.906 3.587 0.364 0.175 0.153 0.159 0.163
0.500 0.750 1.000 1.250 1.500 2.000 Sample Depth (irr 0.250 0.500 0.750 1.000 1.250 1.500 1.500 1.750 2.000 Sample Depth (irr	42.016 12.337 0.619 0.193 0.183 0.158 0.150 0.166 TB8H5-B D A 0.553 17.019 3.597 0.357 0.183 0.158 0.158 0.158 TB8H5-C D A	41.348 12.104 0.584 0.189 0.180 0.097 0.105 0.143 NaCl (B 0.578 16.907 3.595 0.356 0.162 0.176 0.165 0.176 NaCl (B	42.089 11.891 0.591 0.212 0.180 0.139 0.127 0.151 Ib/yd³ C 0.598 16.791 3.570 0.378 0.179 0.126 0.153 0.156 Ib/yd³ C	41.818 12.111 0.598 0.198 0.181 0.131 0.127 0.153 AVG 0.576 16.906 3.587 0.364 0.175 0.153 0.159 0.163 AVG
0.500 0.750 1.000 1.250 1.500 2.000 Sample Depth (irr 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (irr 0.250	42.016 12.337 0.619 0.193 0.183 0.158 0.150 0.166 TB8H5-B 1) A 0.553 17.019 3.597 0.357 0.183 0.158 0.158 0.158 0.158 TB8H5-C D A 43.227	41.348 12.104 0.584 0.189 0.180 0.097 0.105 0.143 NaCl (B 0.578 16.907 3.595 0.356 0.162 0.176 0.165 0.176 NaCl (B 43.688	42.089 11.891 0.591 0.212 0.180 0.139 0.127 0.151 Ib/yd³) C 0.598 16.791 3.570 0.378 0.179 0.126 0.153 0.156 Ib/yd³) C 16.791 17.75 17.7	41.818 12.111 0.598 0.198 0.181 0.131 0.127 0.153 AVG 0.576 16.906 3.587 0.364 0.175 0.153 0.159 0.163 AVG 43.492
0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample 0.250 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (in 0.250 0.500 0.500	42.016 12.337 0.619 0.193 0.183 0.158 0.150 0.166 TB8H5-B 0) A 0.553 17.019 3.597 0.357 0.183 0.158 0.158 0.158 0.158 TB8H5-C 1) A 43.227 16.855	41.348 12.104 0.584 0.189 0.180 0.097 0.105 0.143 NaCl (B 0.578 16.907 3.595 0.356 0.162 0.176 0.165 0.176 NaCl (B 43.688 16.584	42.089 11.891 0.591 0.212 0.180 0.139 0.127 0.151 Ib/yd³) C 0.598 16.791 3.570 0.378 0.179 0.126 0.153 0.156 Ib/yd³) C 16.791 3.570 0.378 0.179 0.126 0.153 0.156	41.818 12.111 0.598 0.198 0.181 0.131 0.127 0.153 AVG 0.576 16.906 3.587 0.364 0.175 0.153 0.159 0.163 AVG 43.492 16.608
0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (ir 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000	42.016 12.337 0.619 0.193 0.183 0.158 0.150 0.166 TB8H5-B D A 0.553 17.019 3.597 0.357 0.183 0.158 0.158 0.158 TB8H5-C D A 43.227 16.855 0.806	41.348 12.104 0.584 0.189 0.180 0.097 0.105 0.143 NaCl (B 0.578 16.907 3.595 0.356 0.162 0.176 0.165 0.176 NaCl (B 43.688 16.584 0.764	42.089 11.891 0.591 0.212 0.180 0.139 0.127 0.151 Ib/yd³) C 0.598 16.791 3.570 0.378 0.179 0.126 0.153 0.156 Ib/yd³) C 43.562 16.384 0.787	41.818 12.111 0.598 0.198 0.181 0.131 0.127 0.153 AVG 0.576 16.906 3.587 0.364 0.175 0.153 0.159 0.163 AVG AVG AVG 0.576 16.906 3.587 0.364 0.175 0.153 0.159 0.163
0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (ir 0.250 0.500 0.750 1.000 1.750 2.000	42.016 12.337 0.619 0.193 0.183 0.158 0.150 0.166 TB8H5-B) A 0.553 17.019 3.597 0.357 0.183 0.158 0.158 0.158 TB8H5-C) A 43.227 16.855 0.806 0.259	41.348 12.104 0.584 0.189 0.180 0.097 0.105 0.143 NaCl (B 0.578 16.907 3.595 0.356 0.162 0.176 0.165 0.176 NaCl (B 43.688 16.584 0.764 0.249	42.089 11.891 0.591 0.212 0.180 0.139 0.127 0.151 Ib/yd³) C 0.598 16.791 3.570 0.378 0.179 0.126 0.153 0.156 Ib/yd³) C 43.562 16.384 0.787 0.250	41.818 12.111 0.598 0.198 0.181 0.131 0.127 0.153 AVG 0.576 16.906 3.587 0.364 0.175 0.153 0.159 0.163 AVG 43.492 16.608 0.786 0.253
0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample 0.250 0.750 1.000 1.750 2.000 Sample Depth (ir 0.250 0.500 0.750 1.000 1.750 2.000 Sample 0.250 0.750 1.000 1.250 0.750 1.000 1.250 0.750 1.000 1.250 0.750 0.750 0.250 0.250 0.750 0.250 0	42.016 12.337 0.619 0.193 0.183 0.158 0.150 0.166 TB8H5-B) A 0.553 17.019 3.597 0.357 0.183 0.158 0.158 0.158 TB8H5-C) A 43.227 16.855 0.806 0.259 0.208	41.348 12.104 0.584 0.189 0.180 0.097 0.105 0.143 NaCl (B 0.578 16.907 3.595 0.356 0.162 0.176 0.165 0.176 NaCl (B 43.688 16.584 0.764 0.249 0.203	42.089 11.891 0.591 0.212 0.180 0.139 0.127 0.151 Ib/yd³) C 0.598 16.791 3.570 0.378 0.179 0.126 0.153 0.156 Ib/yd³) C 43.562 16.384 0.787 0.250 0.216	41.818 12.111 0.598 0.198 0.181 0.127 0.153 AVG 0.576 16.906 3.587 0.364 0.175 0.153 0.153 0.159 0.163 AVG 43.492 16.608 0.786 0.253 0.209
0.500 0.750 1.000 1.250 1.500 2.000 Sample Depth (ir 0.250 0.750 1.000 1.750 2.000 Sample Depth (ir 0.250 0.500 0.750 2.000 Sample Depth (ir 0.250 0.500 0.750 1.000 1.250 1.250 1.000 1.250 1.2	42.016 12.337 0.619 0.193 0.183 0.158 0.150 0.166 TB8H5-B D A 0.553 17.019 3.597 0.357 0.183 0.158 0.158 0.158 TB8H5-C D A 43.227 16.855 0.806 0.259 0.208 0.187	41.348 12.104 0.584 0.189 0.180 0.097 0.105 0.143 NaCl (B 0.578 16.907 3.595 0.356 0.162 0.176 0.165 0.176 NaCl (B 43.688 16.584 0.764 0.249 0.203 0.165	42.089 11.891 0.591 0.212 0.180 0.139 0.127 0.151 Ib/yd³) C 0.598 16.791 3.570 0.378 0.179 0.126 0.153 0.156 Ib/yd³) C 43.562 16.384 0.787 0.250 0.216 0.161	41.818 12.111 0.598 0.198 0.181 0.127 0.153 AVG 0.576 16.906 3.587 0.364 0.175 0.153 0.153 0.159 0.163 AVG 43.492 16.608 0.786 0.253 0.209 0.171
0.500 0.750 1.000 1.250 1.500 2.000 Sample Depth (ir 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (ir 0.250 0.500 0.750 1.000 1.250 0.500 0.750 1.000 1.250 1.500 1.250 1.500 1.250 1.500 1.250 1.500 1.250 1.500 1.250 1.500	42.016 12.337 0.619 0.193 0.183 0.158 0.150 0.166 TB8H5-B D) A 0.553 17.019 3.597 0.357 0.158 0.158 0.158 TB8H5-C D) A 43.227 16.855 0.806 0.259 0.208 0.187 0.167	41.348 12.104 0.584 0.189 0.180 0.097 0.105 0.143 NaCl (B 0.578 16.907 3.595 0.356 0.162 0.176 0.165 0.176 NaCl (B 43.688 16.584 0.764 0.203 0.165 0.170	42.089 11.891 0.591 0.212 0.180 0.139 0.127 0.151 Ib/yd³) C 0.598 16.791 3.570 0.378 0.179 0.156 Ib/yd³) C 43.562 16.384 0.787 0.250 0.216 0.161 0.160	41.818 12.111 0.598 0.198 0.181 0.131 0.127 0.153 AVG 0.576 16.906 3.587 0.364 0.175 0.153 0.159 0.163 AVG 43.492 16.608 0.786 0.253 0.209 0.171 0.166
0.500 0.750 1.000 1.250 1.500 2.000 Sample Depth (ir 0.250 0.750 1.000 1.250 1.750 2.000 Sample Depth (ir 0.250 0.500 0.750 2.000 Sample Depth (ir 0.250 0.500 0.750 1.000 1.250 1.2	42.016 12.337 0.619 0.193 0.183 0.158 0.150 0.166 TB8H5-B D A 0.553 17.019 3.597 0.357 0.183 0.158 0.158 0.158 TB8H5-C D A 43.227 16.855 0.806 0.259 0.208 0.187	41.348 12.104 0.584 0.189 0.180 0.097 0.105 0.143 NaCl (B 0.578 16.907 3.595 0.356 0.162 0.176 0.165 0.176 NaCl (B 43.688 16.584 0.764 0.249 0.203 0.165	42.089 11.891 0.591 0.212 0.180 0.139 0.127 0.151 Ib/yd³) C 0.598 16.791 3.570 0.378 0.179 0.126 0.153 0.156 Ib/yd³) C 43.562 16.384 0.787 0.250 0.216 0.161	41.818 12.111 0.598 0.198 0.181 0.131 0.127 0.153 AVG 0.576 16.906 3.587 0.364 0.175 0.153 0.153 0.159 0.163 AVG 43.492 16.608 0.786 0.253 0.209 0.171
0.500 0.750 1.000 1.250 1.500 2.000 Sample Depth (ir 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (ir 0.250 0.500 0.750 1.000 1.250 0.500 0.750 1.000 1.250 1.500 1.250 1.500 1.250 1.500 1.250 1.500 1.250 1.500 1.250 1.500	42.016 12.337 0.619 0.193 0.183 0.158 0.150 0.166 TB8H5-B D) A 0.553 17.019 3.597 0.357 0.158 0.158 0.158 TB8H5-C D) A 43.227 16.855 0.806 0.259 0.208 0.187 0.167	41.348 12.104 0.584 0.189 0.180 0.097 0.105 0.143 NaCl (B 0.578 16.907 3.595 0.356 0.162 0.176 0.165 0.176 NaCl (B 43.688 16.584 0.764 0.203 0.165 0.170	42.089 11.891 0.591 0.212 0.180 0.139 0.127 0.151 Ib/yd³) C 0.598 16.791 3.570 0.378 0.179 0.156 Ib/yd³) C 43.562 16.384 0.787 0.250 0.216 0.161 0.160	41.818 12.111 0.598 0.198 0.181 0.131 0.127 0.153 AVG 0.576 16.906 3.587 0.364 0.175 0.153 0.159 0.163 AVG 43.492 16.608 0.786 0.253 0.209 0.171 0.166
0.500 0.750 1.000 1.250 1.500 2.000 Sample Depth (ir 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (ir 0.250 0.500 0.750 1.000 1.250 0.500 0.750 1.000 1.250 1.500 1.250 1.500 1.250 1.500 1.250 1.500 1.250 1.500 1.250 1.500	42.016 12.337 0.619 0.193 0.183 0.158 0.150 0.166 TB8H5-B D) A 0.553 17.019 3.597 0.357 0.158 0.158 0.158 TB8H5-C D) A 43.227 16.855 0.806 0.259 0.208 0.187 0.167	41.348 12.104 0.584 0.189 0.180 0.097 0.105 0.143 NaCl (B 0.578 16.907 3.595 0.356 0.162 0.176 0.165 0.176 NaCl (B 43.688 16.584 0.764 0.203 0.165 0.170	42.089 11.891 0.591 0.212 0.180 0.139 0.127 0.151 Ib/yd³) C 0.598 16.791 3.570 0.378 0.179 0.156 Ib/yd³) C 43.562 16.384 0.787 0.250 0.216 0.161 0.160	41.818 12.111 0.598 0.198 0.181 0.131 0.127 0.153 AVG 0.576 16.906 3.587 0.364 0.175 0.153 0.159 0.163 AVG 43.492 16.608 0.786 0.253 0.209 0.171 0.166
0.500 0.750 1.000 1.250 1.500 2.000 Sample Depth (ir 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 Sample Depth (ir 0.250 0.500 0.750 1.000 1.250 0.500 0.750 1.000 1.250 1.500 1.250 1.500 1.250 1.500 1.250 1.500 1.250 1.500 1.250 1.500	42.016 12.337 0.619 0.193 0.183 0.158 0.150 0.166 TB8H5-B D) A 0.553 17.019 3.597 0.357 0.158 0.158 0.158 TB8H5-C D) A 43.227 16.855 0.806 0.259 0.208 0.187 0.167	41.348 12.104 0.584 0.189 0.180 0.097 0.105 0.143 NaCl (B 0.578 16.907 3.595 0.356 0.162 0.176 0.165 0.176 NaCl (B 43.688 16.584 0.764 0.249 0.203 0.165 0.170	42.089 11.891 0.591 0.212 0.180 0.139 0.127 0.151 Ib/yd³) C 0.598 16.791 3.570 0.378 0.179 0.156 Ib/yd³) C 43.562 16.384 0.787 0.250 0.216 0.161 0.160	41.818 12.111 0.598 0.198 0.181 0.131 0.127 0.153 AVG 0.576 16.906 3.587 0.364 0.175 0.153 0.159 0.163 AVG 43.492 16.608 0.786 0.253 0.209 0.171 0.166



8.080E-13 Background(lb/yd^3

69.925 R^2 Value

Diffusion(m^2/sec)

Surface(lb/yd^3)

ASTM CEMENT - CLASS IV CONCRETE (364 DAYS) Sample TB1A4-A

Samp	le	I B1A4-A			
Depth	(in)		NaCl (lb/yd³)	
Depin	(11)	Α	В	С	AVG
0.25	0	43.110	43.900	43.203	43.404
0.50	0	26.918	26.878	26.158	26.651
0.75	0	14.025	14.031	14.257	14.104
1.00	0	5.668	5.681	5.904	5.751
1.25	0	0.760	0.808	0.829	0.799
1.50	0	0.697	0.657	0.628	0.661

Samp	le	TB1A4-B			
Depth (in)-			NaCl ((lb/yd³)	
Deptil	(,,,,,	Α	В	С	AVG
0.250)	42.018	41.311	41.828	41.719
0.500	C	25.359	26.139	25.556	25.685
0.750	C	12.773	12.923	12.959	12.885
1.000	C	3.489	3.608	3.715	3.604
1.250	C	0.453	0.473	0.469	0.465
1.500	C	0.265	0.240	0.250	0.252

Sample TB1A4-C

Depth (in)-		NaCl (lb/yd³)	
Deptii (iii)	Α	В	С	AVG
0.250	45.493	45.490	46.153	45.712
0.500	31.461	31.419	31.780	31.553
0.750	16.699	16.605	17.202	16.835
1.000	8.210	8.444	8.277	8.310
1.250	2.356	2.419	2.196	2.324
1.500	0.317	0.322	0.347	0.329

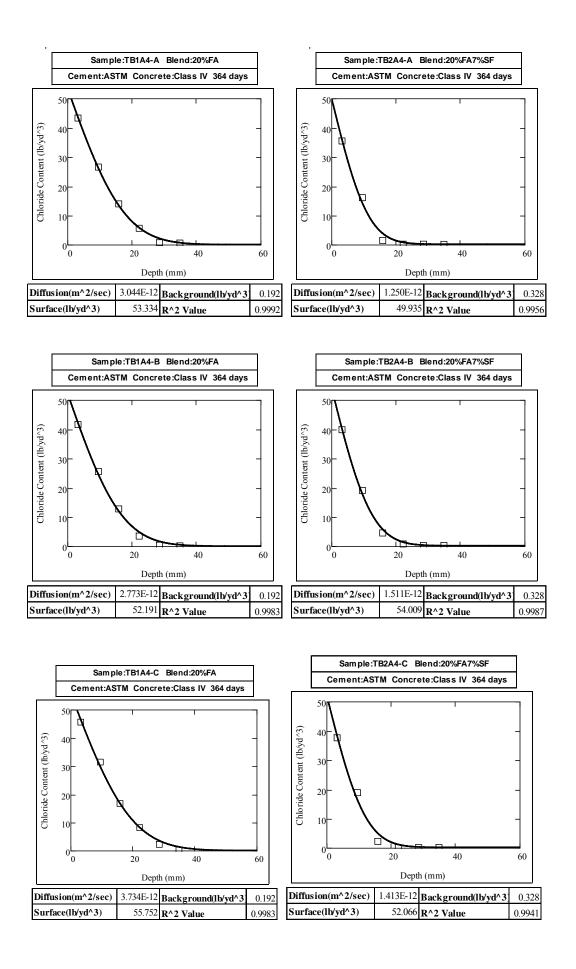
Sample TB2A4-A

Depth (in)-			NaCl (lb/yd³)	
Deptii	(11)-	Α	В	С	AVG
0.25	50	35.366	35.645	35.787	35.599
0.50	0	16.137	15.874	16.584	16.198
0.75	50	1.373	1.525	1.664	1.521
1.00	0	0.285	0.281	0.284	0.283
1.25	50	0.290	0.314	0.266	0.290
1.50	0	0.241	0.270	0.267	0.259

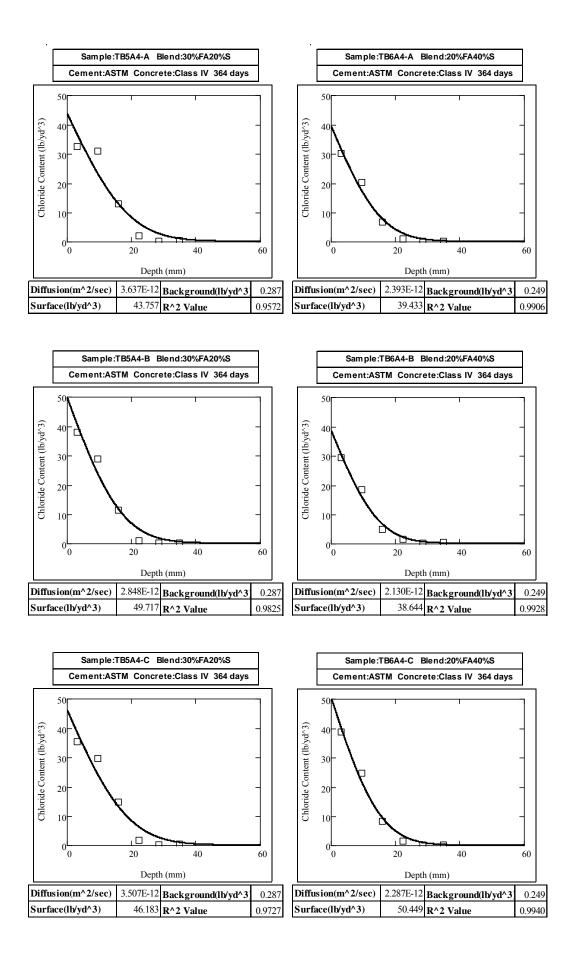
Sample	TB2A4-B
--------	---------

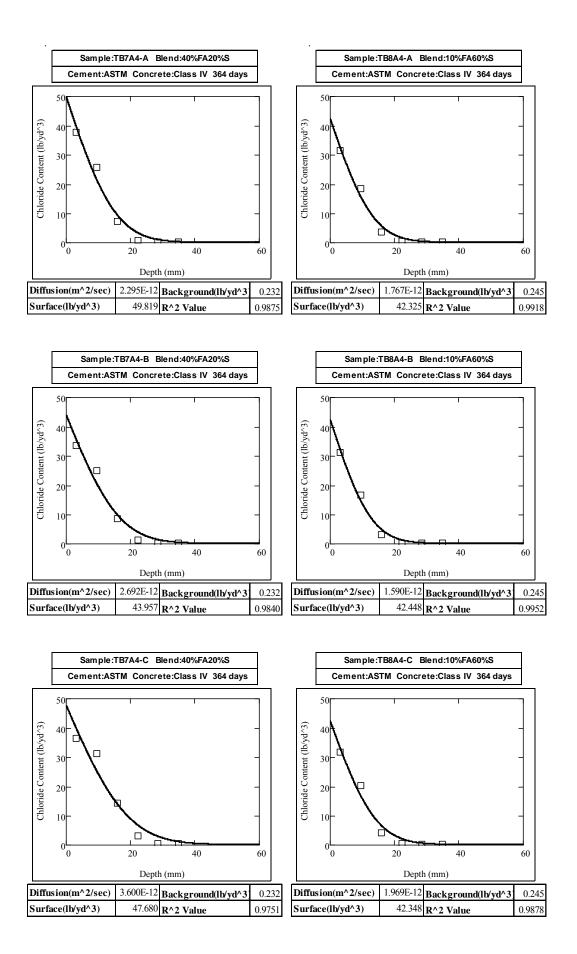
Depth (in)-	NaCl (lb/yd ³)			
Deptil (III)-	Α	В	С	AVG
0.250	40.218	40.020	39.598	39.945
0.500	19.001	19.276	19.304	19.194
0.750	4.719	4.767	4.519	4.668
1.000	0.879	0.944	0.894	0.906
1.250	0.341	0.343	0.336	0.340
1.500	0.360	0.384	0.359	0.368

Samp	ole	TB2A4-C			
Depth	(in)		NaCl (lb/yd³)	
Deptii	(11)	Α	В	С	AVG
0.25	0	37.375	37.809	38.042	37.742
0.50	0	18.973	18.973	19.003	18.983
0.75	0	2.322	2.281	2.337	2.313
1.00	0	0.250	0.252	0.284	0.262
1.25	0	0.214	0.228	0.225	0.222
1.50	0	0.222	0.235	0.229	0.229


Sample	TB3A4-A			
Depth (in)		NaCl (lb/yd³)	
• • • •	Α	В	С	AVG
0.250	33.460	32.758	33.051	33.090
0.500	27.378	27.169	27.287	27.278
0.750	14.963	14.974	14.525	14.821
1.000	5.762	5.803	5.703	5.756
1.250	0.627	0.657	0.654	0.646
1.500	0.379	0.436	0.445	0.420
Sample	TB3A4-B			
Depth (in)		NaCl (lb/yd³)	
Depth (iii)	Α	В	C	AVG
0.250	34.024	33.336	33.737	33.699
0.500	26.573	26.216	26.512	26.434
0.750	14.345	14.427	14.661	14.478
1.000	3.421	3.289	3.319	3.343
1.250	0.273	0.286	0.300	0.286
1.500	0.392	0.389	0.392	0.391
Sample	TB3A4-C			
Danth (in)		NaCl (lb/yd³)	
Depth (in)	Α	В	Ċ	AVG
0.250	33.892	34.607	34.495	34.331
0.500	26.621	25.867	26.217	26.235
0.750	13.361	13.236	13.875	13.491
1.000	3.163	3.288	3.194	3.215
1.250	0.401	0.402	0.419	0.407
1.500	0.865	0.868	0.866	0.866
Sample	TB4A4-A			
Depth (in)		NaCl (lb/yd³)	
Depth (iii)	Α	В	C	AVG
0.250	36.274	35.891	36.331	36.165
0.500	24.873	24.868	24.834	24.858
0.750				
0.700	11.322	11.015	10.930	11.089
1.000	11.322 2.239	11.015 2.376	10.930 2.342	
1.000	2.239	2.376	2.342	2.319
1.000 1.250	2.239 0.247	2.376 0.230	2.342 0.252	2.319 0.243
1.000 1.250 1.500 Sample	2.239 0.247 0.264 TB4A4-B	2.376 0.230 0.265 NaCl (2.342 0.252 0.279	2.319 0.243 0.269
1.000 1.250 1.500 Sample	2.239 0.247 0.264 TB4A4-B	2.376 0.230 0.265	2.342 0.252 0.279	2.319 0.243
1.000 1.250 1.500 Sample	2.239 0.247 0.264 TB4A4-B	2.376 0.230 0.265 NaCl (2.342 0.252 0.279	2.319 0.243 0.269
1.000 1.250 1.500 Sample Depth (in) 0.250 0.500	2.239 0.247 0.264 TB4A4-B 33.295 26.093	2.376 0.230 0.265 NaCl (B	2.342 0.252 0.279 Ib/yd ³) C	2.319 0.243 0.269 AVG 32.993 26.485
1.000 1.250 1.500 Sample Depth (in) 0.250	2.239 0.247 0.264 TB4A4-B A 33.295	2.376 0.230 0.265 NaCl (B 33.008	2.342 0.252 0.279 Ib/yd ³) C 32.677	2.319 0.243 0.269 AVG 32.993 26.485
1.000 1.250 1.500 Sample Depth (in) 0.250 0.500	2.239 0.247 0.264 TB4A4-B 33.295 26.093	2.376 0.230 0.265 NaCl (B 33.008 26.708	2.342 0.252 0.279 Ib/yd³) C 32.677 26.653	2.319 0.243 0.269 AVG 32.993 26.485
1.000 1.250 1.500 Sample Depth (in) 0.250 0.500 0.750	2.239 0.247 0.264 TB4A4-B 33.295 26.093 8.391	2.376 0.230 0.265 NaCl (B 33.008 26.708 8.400	2.342 0.252 0.279 b/yd³) C 32.677 26.653 8.818	0.269 AVG 32.993 26.485 8.536

Sample TB4A4-C


Depth (in)		NaCl (lb/yd³)	
Deptil (III)	Α	В	С	AVG
0.250	36.143	35.609	36.012	35.921
0.500	27.340	27.886	27.754	27.660
0.750	14.405	14.255	14.241	14.300
1.000	2.975	3.312	3.367	3.218
1.250	0.367	0.366	0.367	0.367
1.500	0.307	0.312	0.309	0.309


	TB5A4-A			
Depth (in))	NaCl (
0.050	A	B	C	AVG
0.250	32.859	32.098	32.871	32.609
0.500	31.085	30.627	31.388	31.033
0.750	12.793	12.886	13.006	12.895
1.000	2.068	2.080	2.088	2.079
1.250	0.279	0.292	0.291	0.287
1.500	0.539	0.518	0.550	0.536
Sample	TB5A4-B		0	
Depth (in)) <u> </u>	NaCl (B	lb/yd°) C	AVG
0.250	38.391	37.999	37.859	38.083
0.500	29.144	28.893	29.065	29.034
0.750	11.551	11.618	11.252	11.474
1.000	1.042	1.087	1.085	1.071
1.250	0.369	0.380	0.370	0.373
1.500	0.267	0.267	0.234	0.256
1.000	0.207	0.207	0.234	0.230
Sample	TB5A4-C			
Depth (in))	NaCl (lb/yd³)	
	ΎΑ	В	C	AVG
0.250	35.169	35.344	35.566	35.360
0.500	29.552	29.692	30.109	29.784
0.750	14.735	14.735	14.970	14.813
1.000	1.740	1.759	1.796	1.765
1.250	0.270	0.278	0.272	0.273
1.500	0.536	0.538	0.536	0.537
Sample	TB6A4-A			
Depth (in))	NaCl (
	A	B	C	AVG
0.250	30.311	30.045	30.333	30.230
0.500	20.566	20.682	19.984	20.411
0.750	6.837	6.737	7.076	6.883
			0.935	0.934
1.000	0.935	0.931		
1.000 1.250	0.258	0.261	0.254	0.258
1.000				
1.000 1.250	0.258	0.261	0.254	0.258
1.000 1.250 1.500 Sample	0.258 0.245 TB6A4-B	0.261	0.254 0.233	0.258
1.000 1.250 1.500 Sample	0.258 0.245 TB6A4-B	0.261 0.269	0.254 0.233 Ib/yd ³) C	0.258
1.000 1.250 1.500 Sample Depth (in) 0.250	0.258 0.245 TB6A4-B) <u>A</u> 29.330	0.261 0.269 NaCl (B 29.591	0.254 0.233 Ib/yd ³) C 29.553	0.258 0.249 AVG 29.491
1.000 1.250 1.500 Sample Depth (in) 0.250 0.500	0.258 0.245 TB6A4-B) A 29.330 18.458	0.261 0.269 NaCl (B 29.591 18.672	0.254 0.233 Ib/yd³) C 29.553 18.370	0.258 0.249 AVG 29.491 18.500
1.000 1.250 1.500 Sample Depth (in) 0.250 0.500 0.750	0.258 0.245 TB6A4-B) <u>A</u> 29.330 18.458 5.024	0.261 0.269 NaCl (B 29.591 18.672 4.929	0.254 0.233 Ib/yd³) C 29.553 18.370 5.043	0.258 0.249 AVG 29.491 18.500 4.999
1.000 1.250 1.500 Sample Depth (in) 0.250 0.500 0.750 1.000	0.258 0.245 TB6A4-B) A 29.330 18.458 5.024 1.633	0.261 0.269 NaCl (B 29.591 18.672 4.929 1.586	0.254 0.233 Ib/yd³) 29.553 18.370 5.043 1.577	0.258 0.249 AVG 29.491 18.500 4.999 1.599
1.000 1.250 1.500 Sample Depth (in) 0.250 0.500 0.750 1.000 1.250	0.258 0.245 TB6A4-B) A 29.330 18.458 5.024 1.633 0.358	0.261 0.269 NaCl (B 29.591 18.672 4.929 1.586 0.351	0.254 0.233 b/yd³) 29.553 18.370 5.043 1.577 0.363	0.258 0.249 AVG 29.491 18.500 4.999 1.599 0.357
1.000 1.250 1.500 Sample Depth (in) 0.250 0.500 0.750 1.000	0.258 0.245 TB6A4-B) A 29.330 18.458 5.024 1.633	0.261 0.269 NaCl (B 29.591 18.672 4.929 1.586	0.254 0.233 Ib/yd³) 29.553 18.370 5.043 1.577	0.258 0.249 AVG 29.491 18.500 4.999 1.599
1.000 1.250 1.500 Sample Depth (in) 0.250 0.500 0.750 1.000 1.250	0.258 0.245 TB6A4-B) A 29.330 18.458 5.024 1.633 0.358	0.261 0.269 NaCl (B 29.591 18.672 4.929 1.586 0.351 0.414	0.254 0.233 Ib/yd³) C 29.553 18.370 5.043 1.577 0.363 0.408	0.258 0.249 AVG 29.491 18.500 4.999 1.599 0.357
1.000 1.250 1.500 Sample Depth (in) 0.250 0.500 0.750 1.000 1.250 1.500 Sample	0.258 0.245 TB6A4-B) A 29.330 18.458 5.024 1.633 0.358 0.421 TB6A4-C	0.261 0.269 NaCl (B 29.591 18.672 4.929 1.586 0.351 0.414 NaCl (0.254 0.233 Ib/yd³) C 29.553 18.370 5.043 1.577 0.363 0.408 Ib/yd³)	0.258 0.249 AVG 29.491 18.500 4.999 1.599 0.357 0.414
1.000 1.250 1.500 Sample Depth (in) 0.250 0.500 0.750 1.000 1.250 1.500 Sample Depth (in)	0.258 0.245 TB6A4-B) A 29.330 18.458 5.024 1.633 0.358 0.421 TB6A4-C) A	0.261 0.269 NaCl (B 29.591 18.672 4.929 1.586 0.351 0.414 NaCl (B	0.254 0.233 Ib/yd³) C 29.553 18.370 5.043 1.577 0.363 0.408 Ib/yd³) C	0.258 0.249 AVG 29.491 18.500 4.999 1.599 0.357 0.414 AVG
1.000 1.250 1.500 Sample Depth (in) 0.250 0.500 0.750 1.000 1.250 1.500 Sample Depth (in) 0.250	0.258 0.245 TB6A4-B) A 29.330 18.458 5.024 1.633 0.358 0.421 TB6A4-C) A 39.040	0.261 0.269 NaCl (B 29.591 18.672 4.929 1.586 0.351 0.414 NaCl (B 38.869	0.254 0.233 Ib/yd³) C 29.553 18.370 5.043 1.577 0.363 0.408 Ib/yd³) C 38.468	0.258 0.249 AVG 29.491 18.500 4.999 1.599 0.357 0.414 AVG 38.792
1.000 1.250 1.500 Sample Depth (in) 0.250 0.500 0.750 1.000 1.250 1.500 Sample Depth (in) 0.250 0.500 0.750 0.250 0.500	0.258 0.245 TB6A4-B) A 29.330 18.458 5.024 1.633 0.358 0.421 TB6A4-C) A 39.040 24.656	0.261 0.269 NaCl (B 29.591 18.672 4.929 1.586 0.351 0.414 NaCl (B 38.869 24.793	0.254 0.233 Ib/yd³) C 29.553 18.370 5.043 1.577 0.363 0.408 Ib/yd³) C 38.468 24.844	0.258 0.249 AVG 29.491 18.500 4.999 1.599 0.357 0.414 AVG 38.792 24.764
1.000 1.250 1.500 Sample Depth (in) 0.250 0.500 0.750 1.000 1.250 1.500 Sample Depth (in) 0.250 0.500 0.750 0.500 0.750 0.500 0.750 0.500 0.750 0.500 0.750 0.500 0.750 0.500 0.750 0.500 0.750 0.500 0.750 0.500 0.750 0.500 0.750 0.500 0.750 0.500 0.750 0.500 0.750 0.500 0.500 0.750 0.50	0.258 0.245 TB6A4-B) A 29.330 18.458 5.024 1.633 0.358 0.421 TB6A4-C) A 39.040 24.656 8.021	0.261 0.269 NaCl (B 29.591 18.672 4.929 1.586 0.351 0.414 NaCl (B 38.869 24.793 8.240	0.254 0.233 b/yd³) C 29.553 18.370 5.043 1.577 0.363 0.408 b/yd³) C 38.468 24.844 8.448	0.258 0.249 AVG 29.491 18.500 4.999 1.599 0.357 0.414 AVG 38.792 24.764 8.236
1.000 1.250 1.500 Sample Depth (in) 0.250 0.500 0.750 1.000 1.250 1.500 Sample Depth (in) 0.250 0.500 0.750 1.000 1.200 0.750 1.000 0.750 1.000 0.750 1.000 0.750 1.000 0.750 1.000 0.750 1.000 0.750 1.000 0.750 1.000 0.750 1.000 0.750 1.000 0.750 1.000 0.750 1.000 1.250 0.750 1.000 1.250 0.750 1.000 1.250 0.750 1.000 1.250 1.500 0.750 1.000 1.250 0.750 1.500 0.750 1.500 0.750 1.500 0.750 1.500 0.750 1.500 0.750 1.500 0.750 1.500 0.750 1.500 0.750 1.500 0.750 1.500 0.750 1.500 0.750 1.500 0.750 0.500 0.750 0.500 0.750 0.750 1.500 0.750 0.000 0.750 0.000 0.750 0.000 0.750 0.000 0.750 0.000 0.750 0.000 0.750 0.000 0.750 0.000 0.750 0.000 0.750 0.000 0.000 0.750 0.000 0.000 0.750 0.000 0.000 0.750 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	0.258 0.245 TB6A4-B) A 29.330 18.458 5.024 1.633 0.358 0.421 TB6A4-C) A 39.040 24.656 8.021 1.544	0.261 0.269 NaCl (B 29.591 18.672 4.929 1.586 0.351 0.414 NaCl (B 38.869 24.793 8.240 1.565	0.254 0.233 Ib/yd³) C 29.553 18.370 5.043 1.577 0.363 0.408 Ib/yd³) C 38.468 24.844 8.448 1.563	0.258 0.249 AVG 29.491 18.500 4.999 1.599 0.357 0.414 AVG 38.792 24.764 8.236 1.557
1.000 1.250 1.500 Sample Depth (in) 0.250 0.500 0.750 1.000 1.250 1.500 Sample Depth (in) 0.250 0.500 0.750 0.500 0.750 0.500 0.750 0.500 0.750 0.500 0.750 0.500 0.750 0.500 0.750 0.500 0.750 0.500 0.750 0.500 0.750 0.500 0.750 0.500 0.750 0.500 0.750 0.500 0.750 0.50	0.258 0.245 TB6A4-B) A 29.330 18.458 5.024 1.633 0.358 0.421 TB6A4-C) A 39.040 24.656 8.021	0.261 0.269 NaCl (B 29.591 18.672 4.929 1.586 0.351 0.414 NaCl (B 38.869 24.793 8.240	0.254 0.233 b/yd³) C 29.553 18.370 5.043 1.577 0.363 0.408 b/yd³) C 38.468 24.844 8.448	0.258 0.249 AVG 29.491 18.500 4.999 1.599 0.357 0.414 AVG 38.792 24.764 8.236

Depth (i	n)	NaCl (lb/yd³)	
Deptil (i	м А	В	С	AVG
0.250	38.190	37.722	37.506	37.806
0.500	25.749	25.950	25.995	25.898
0.750	7.195	7.542	7.286	7.341
1.000	0.871	0.861	0.877	0.870
1.250	0.297	0.299	0.323	0.306
1.500	0.226	0.235	0.236	0.232
Sample	TB7A4-B			
Depth (i	n)	NaCl (
0.050	A	B	C	AVG
0.250	33.819	33.451	33.526	33.599
0.500	25.231	25.271	24.865	25.122
0.750	8.530	8.467	8.761	8.586
1.000	1.398	1.325	1.351	1.358
1.250	0.316	0.323	0.334	0.324
1.500	0.204	0.206	0.277	0.229
Sample	TB7A4-C			
Depth (i	n)	NaCl (
	<u> </u>	В	C	AVG
0.250	36.867	36.144	36.720	36.577
0.500	31.338	31.779	30.999	31.372
0.750	14.034	14.266	14.634	14.311
1.000	3.070	3.287	3.156	3.171
1.250	0.538	0.551	0.567	0.552
1.500	0.580	0.586	0.616	0.594
Sample	TB8A4-A			
Depth (i	n)	NaCl (AVG
	· A	В	С	AVG
0.250	31.825	B 31.566	C 31.122	31.504
0.250 0.500	31.825 18.287	B 31.566 18.444	C 31.122 18.392	31.504 18.374
0.250 0.500 0.750	31.825 18.287 3.511	B 31.566 18.444 3.730	C 31.122 18.392 3.550	31.504 18.374 3.597
0.250 0.500 0.750 1.000	31.825 18.287 3.511 0.403	B 31.566 18.444 3.730 0.389	C 31.122 18.392 3.550 0.385	31.504 18.374 3.597 0.392
0.250 0.500 0.750 1.000 1.250	31.825 18.287 3.511 0.403 0.338	B 31.566 18.444 3.730 0.389 0.347	C 31.122 18.392 3.550 0.385 0.350	31.504 18.374 3.597 0.392 0.345
0.250 0.500 0.750 1.000	31.825 18.287 3.511 0.403	B 31.566 18.444 3.730 0.389	C 31.122 18.392 3.550 0.385	31.504 18.374 3.597 0.392
0.250 0.500 0.750 1.000 1.250	31.825 18.287 3.511 0.403 0.338	B 31.566 18.444 3.730 0.389 0.347 0.262	C 31.122 18.392 3.550 0.385 0.350 0.261	31.504 18.374 3.597 0.392 0.345
0.250 0.500 0.750 1.000 1.250 1.500 Sample	A 31.825 18.287 3.511 0.403 0.338 0.212 TB8A4-B	B 31.566 18.444 3.730 0.389 0.347 0.262 NaCl (C 31.122 18.392 3.550 0.385 0.350 0.261 Ib/yd ³)	31.504 18.374 3.597 0.392 0.345 0.245
0.250 0.500 0.750 1.000 1.250 1.500 Sample Depth (ii	A 31.825 18.287 3.511 0.403 0.338 0.212 TB8A4-B n)A	B 31.566 18.444 3.730 0.389 0.347 0.262 NaCl (B	C 31.122 18.392 3.550 0.385 0.350 0.261 Ib/yd ³) C	31.504 18.374 3.597 0.392 0.345 0.245
0.250 0.500 0.750 1.000 1.250 1.500 Sample Depth (ii	A 31.825 18.287 3.511 0.403 0.338 0.212 TB8A4-B n) <u>A</u> 31.655	B 31.566 18.444 3.730 0.389 0.347 0.262 NaCl (B 31.122	C 31.122 18.392 3.550 0.385 0.350 0.261 Ib/yd³) C 31.269	31.504 18.374 3.597 0.392 0.345 0.245 AVG 31.349
0.250 0.500 0.750 1.000 1.250 1.500 Sample Depth (ii 0.250 0.500	A 31.825 18.287 3.511 0.403 0.338 0.212 TB8A4-B n) A 31.655 16.689	B 31.566 18.444 3.730 0.389 0.347 0.262 NaCl (B 31.122 16.392	C 31.122 18.392 3.550 0.385 0.350 0.261 Ib/yd ³) C 31.269 16.719	31.504 18.374 3.597 0.392 0.345 0.245 AVG 31.349 16.600
0.250 0.500 0.750 1.000 1.250 1.500 Sample Depth (ii 0.250 0.500 0.750	A 31.825 18.287 3.511 0.403 0.338 0.212 TB8A4-B n) A 31.655 16.689 3.198	B 31.566 18.444 3.730 0.389 0.347 0.262 NaCl (B 31.122 16.392 3.179	C 31.122 18.392 3.550 0.385 0.350 0.261 Ib/yd ³) C 31.269 16.719 3.118	31.504 18.374 3.597 0.392 0.345 0.245 AVG 31.349 16.600 3.165
0.250 0.500 1.000 1.250 1.500 Sample Depth (i 0.250 0.500 0.750 1.000	A 31.825 18.287 3.511 0.403 0.338 0.212 TB8A4-B n) A 31.655 16.689 3.198 0.379	B 31.566 18.444 3.730 0.389 0.347 0.262 NaCl (B 31.122 16.392 3.179 0.340	C 31.122 18.392 3.550 0.385 0.350 0.261 (b/yd ³) C 31.269 16.719 3.118 0.378	31.504 18.374 3.597 0.392 0.345 0.245 AVG 31.349 16.600 3.165 0.366
0.250 0.500 1.000 1.250 1.500 Sample 0.250 0.500 0.750 1.000 1.250	A 31.825 18.287 3.511 0.403 0.338 0.212 TB8A4-B n) A 31.655 16.689 3.198 0.379 0.237	B 31.566 18.444 3.730 0.389 0.347 0.262 NaCl (B 31.122 16.392 3.179 0.340 0.263	C 31.122 18.392 3.550 0.385 0.350 0.261 (b/yd ³) C 31.269 16.719 3.118 0.378 0.265	31.504 18.374 3.597 0.392 0.345 0.245 AVG 31.349 16.600 3.165 0.366 0.255
0.250 0.500 1.000 1.250 1.500 Sample Depth (i 0.250 0.500 0.750 1.000	A 31.825 18.287 3.511 0.403 0.338 0.212 TB8A4-B n) A 31.655 16.689 3.198 0.379	B 31.566 18.444 3.730 0.389 0.347 0.262 NaCl (B 31.122 16.392 3.179 0.340	C 31.122 18.392 3.550 0.385 0.350 0.261 (b/yd ³) C 31.269 16.719 3.118 0.378	31.504 18.374 3.597 0.392 0.345 0.245 AVG 31.349 16.600 3.165 0.366
0.250 0.500 1.000 1.250 1.500 Sample 0.250 0.500 0.750 1.000 1.250	A 31.825 18.287 3.511 0.403 0.338 0.212 TB8A4-B n) A 31.655 16.689 3.198 0.379 0.237	B 31.566 18.444 3.730 0.389 0.347 0.262 NaCl (B 31.122 16.392 3.179 0.340 0.263 0.311	C 31.122 18.392 3.550 0.385 0.350 0.261 Ib/yd³ C 31.269 16.719 3.118 0.378 0.265 0.283	31.504 18.374 3.597 0.392 0.345 0.245 AVG 31.349 16.600 3.165 0.366 0.255
0.250 0.500 1.250 1.250 1.500 Sample 0.250 0.500 0.750 1.000 1.250 1.500 Sample	A 31.825 18.287 3.511 0.403 0.338 0.212 TB8A4-B n) A 31.655 16.689 3.198 0.379 0.237 0.291 TB8A4-C	B 31.566 18.444 3.730 0.389 0.347 0.262 NaCl (B 31.122 16.392 3.179 0.340 0.263 0.311 NaCl (C 31.122 18.392 3.550 0.385 0.350 0.261 Ib/yd³) C 31.269 16.719 3.118 0.378 0.265 0.283 Ib/yd³)	31.504 18.374 3.597 0.392 0.345 0.245 AVG 31.349 16.600 3.165 0.366 0.255 0.295
0.250 0.500 0.750 1.250 1.250 Sample Depth (i 0.250 0.500 0.750 1.000 1.250 1.500 Sample Depth (i	A 31.825 18.287 3.511 0.403 0.338 0.212 TB8A4-B n) A 31.655 16.689 3.198 0.379 0.237 0.291 TB8A4-C n) A	B 31.566 18.444 3.730 0.389 0.347 0.262 NaCl (B 31.122 16.392 3.179 0.340 0.263 0.311 NaCl (B	C 31.122 18.392 3.550 0.385 0.350 0.261 Ib/yd³) C Ib/yd³) C	31.504 18.374 3.597 0.392 0.345 0.245 AVG 31.349 16.600 3.165 0.366 0.255 0.295 AVG
0.250 0.500 0.750 1.250 1.250 Sample Depth (i 0.250 0.750 1.000 1.250 1.500 Sample Depth (i 0.250	A 31.825 18.287 3.511 0.403 0.338 0.212 TB8A4-B n) A 31.655 16.689 3.198 0.379 0.237 0.291 TB8A4-C n) A 31.676	B 31.566 18.444 3.730 0.389 0.347 0.262 NaCl (B 31.122 16.392 3.179 0.340 0.263 0.311 NaCl (B 31.433	C 31.122 18.392 3.550 0.385 0.350 0.261 Ib/yd³ C 31.269 16.719 3.118 0.378 0.265 0.283 Ib/yd³ C 31.961	31.504 18.374 3.597 0.392 0.345 0.245 AVG 31.349 16.600 3.165 0.366 0.255 0.295 AVG 31.690
0.250 0.500 0.750 1.250 1.500 Sample 0.250 0.750 1.000 1.250 1.500 Sample Depth (ii 0.250 0.500	A 31.825 18.287 3.511 0.403 0.338 0.212 TB8A4-B n) A 31.655 16.689 3.198 0.379 0.237 0.291 TB8A4-C n) A 31.676 20.462	B 31.566 18.444 3.730 0.389 0.347 0.262 NaCl (B 31.122 16.392 3.179 0.340 0.263 0.311 NaCl (B	C 31.122 18.392 3.550 0.385 0.350 0.261 Ib/yd³) C Ib/yd³) C	31.504 18.374 3.597 0.392 0.345 0.245 AVG 31.349 16.600 3.165 0.366 0.255 0.295 AVG
0.250 0.500 0.750 1.250 1.250 Sample Depth (i 0.250 0.750 1.000 1.250 1.500 Sample Depth (i 0.250	A 31.825 18.287 3.511 0.403 0.338 0.212 TB8A4-B n) A 31.655 16.689 3.198 0.379 0.237 0.291 TB8A4-C n) A 31.676	B 31.566 18.444 3.730 0.389 0.347 0.262 NaCl (B 31.122 16.392 3.179 0.340 0.263 0.311 NaCl (B 31.433	C 31.122 18.392 3.550 0.385 0.350 0.261 Ib/yd³ C 31.269 16.719 3.118 0.378 0.265 0.283 Ib/yd³ C 31.961	31.504 18.374 3.597 0.392 0.345 0.245 AVG 31.349 16.600 3.165 0.366 0.255 0.295 AVG 31.690
0.250 0.500 0.750 1.250 1.500 Sample 0.250 0.500 0.750 1.000 1.250 1.500 Sample Depth (i 0.250 0.500 0.750 1.000	A 31.825 18.287 3.511 0.403 0.338 0.212 TB8A4-B n) A 31.655 16.689 3.198 0.379 0.237 0.291 TB8A4-C n) A 31.676 20.462 4.446 0.414	B 31.566 18.444 3.730 0.389 0.347 0.262 NaCl (B 31.122 16.392 3.179 0.340 0.263 0.311 NaCl (B 31.433 20.111 4.049 0.412	C 31.122 18.392 3.550 0.385 0.350 0.261 Ib/yd³ C 31.269 16.719 3.118 0.378 0.265 0.283 Ib/yd³ C 31.961 20.343 4.382 0.433	31.504 18.374 3.597 0.392 0.345 0.245 AVG 31.349 16.600 3.165 0.255 0.295 AVG 31.690 20.305 4.292 0.420
0.250 0.500 0.750 1.250 1.500 Sample 0.250 0.750 1.000 1.250 1.500 Sample Depth (i 0.250 0.500 0.750	A 31.825 18.287 3.511 0.403 0.338 0.212 TB8A4-B n) A 31.655 16.689 3.198 0.379 0.237 0.291 TB8A4-C n) A 31.676 20.462 4.446 0.414 0.215	B 31.566 18.444 3.730 0.389 0.347 0.262 NaCl (B 31.122 16.392 3.179 0.340 0.263 0.311 NaCl (B 31.433 20.111 4.049	C 31.122 18.392 3.550 0.385 0.350 0.261 Ib/yd ³) C 31.269 16.719 3.118 0.378 0.265 0.283 Ib/yd ³) C 31.961 20.343 4.382	31.504 18.374 3.597 0.392 0.345 0.245 AVG 31.349 16.600 3.165 0.366 0.255 0.295 AVG 31.690 20.305 4.292
0.250 0.500 0.750 1.250 1.500 Sample 0.250 0.500 0.750 1.000 1.250 1.500 Sample Depth (i 0.250 0.500 0.750 1.000	A 31.825 18.287 3.511 0.403 0.338 0.212 TB8A4-B n) A 31.655 16.689 3.198 0.379 0.237 0.291 TB8A4-C n) A 31.676 20.462 4.446 0.414	B 31.566 18.444 3.730 0.389 0.347 0.262 NaCl (B 31.122 16.392 3.179 0.340 0.263 0.311 NaCl (B 31.433 20.111 4.049 0.412	C 31.122 18.392 3.550 0.385 0.350 0.261 Ib/yd³ C 31.269 16.719 3.118 0.378 0.265 0.283 Ib/yd³ C 31.961 20.343 4.382 0.433	31.504 18.374 3.597 0.392 0.345 0.245 AVG 31.349 16.600 3.165 0.255 0.295 AVG 31.690 20.305 4.292 0.420

ASTM CEMENT - CLASS V CONCRETE (364 DAYS)

Sample TB1A5-A

Depth	(in) –		NaCl (lb/yd³)	
Deptii	(11)-	Α	В	С	AVG
0.25	50	48.999	48.964	48.914	48.959
0.50	0	33.590	33.443	32.957	33.330
0.75	50	18.925	19.396	19.285	19.202
1.00	0	9.979	10.219	10.108	10.102
1.25	50	2.937	3.256	3.109	3.101
1.50	0	0.472	0.474	0.458	0.468

Sample TB1A5-B

Depth (in)		NaCl (lb/yd ³)			
Deptil (III)	Α	В	С	AVG	
0.250	43.424	43.031	43.733	43.396	
0.500	27.634	27.831	28.153	27.873	
0.750	18.702	18.680	18.750	18.711	
1.000	9.834	10.214	9.524	9.857	
1.250	3.428	3.511	3.680	3.540	
1.500	0.877	0.928	0.851	0.885	

Sample TB1A5-C

Depth (in		NaCl (lb/yd³)	
Deptil (III	Α	В	С	AVG
0.250	50.146	49.627	50.074	49.949
0.500	32.020	31.584	32.217	31.940
0.750	18.633	18.883	18.847	18.788
1.000	8.528	8.502	8.573	8.534
1.250	3.600	2.867	2.921	3.129
1.500	0.379	0.354	0.399	0.377

Sample TB2A5-A

Depth (in)		NaCl (lb/yd ³)			
Deptil	(11)-	Α	В	С	AVG
0.25	0	34.282	33.854	34.546	34.227
0.50	0	24.203	24.496	25.000	24.566
0.75	0	8.374	8.416	8.805	8.532
1.00	0	0.644	0.664	0.677	0.662
1.25	0	0.264	0.254	0.276	0.265
1.50	0	0.256	0.253	0.252	0.254

Sample TB2A5-B

Depth (in)-		NaCl (lb/yd³)	
Depth (iii)-	Α	В	С	AVG
0.250	36.099	35.950	35.972	36.007
0.500	26.811	26.797	26.243	26.617
0.750	8.072	7.905	7.601	7.859
1.000	0.617	0.634	0.632	0.628
1.250	0.274	0.287	0.305	0.289
1.500	0.254	0.283	0.281	0.273

Sample TB2A5-C NaCl (lb/yd³) Depth (in) Α В С AVG 0.250 34.228 33.821 33.931 33.993 0.500 25.821 25.943 25.527 25.764 0.750 5.552 5.602 5.386 5.513 1.000 0.409 0.419 0.404 0.411 1.250 0.279 0.312 0.278 0.290 0.272 1.500 0.283 0.284

0.280

Sample	TB3A5-A			
Depth (in)-		NaCl (lb/yd³)	
• • • •	Α	В	С	AVG
0.250	37.701	37.252	37.135	37.363
0.500	30.488	30.751	30.639	30.626
0.750	12.081	12.697	12.668	12.482
1.000	2.423	2.522	2.393	2.446
1.250	0.320	0.296	0.292	0.303
1.500	0.221	0.218	0.231	0.223
Sample	TB3A5-B			
Depth (in)-		NaCl (
• • • •	Α	В	С	AVG
0.250	39.944	39.473	39.579	39.665
0.500	28.619	28.689	28.237	28.515
0.750	13.176	13.691	13.772	13.546
1.000	0.551	0.546	*	0.549
1.250	0.259	0.264	0.253	0.259
1.500	0.207	0.226	0.188	0.207
Sample	TB3A5-C			
Depth (in)-		NaCl (
,	Α	В	С	AVG
0.250	40.521	40.198	40.570	40.430
0.500	32.013	32.382	32.541	32.312
0.750	13.531	13.336	13.945	13.604
1.000	1.668	1.726	1.727	1.707
1.250	0.279	0.292	0.290	0.287
1.500	0.245	0.230	0.232	0.236
Sample	TB4A5-A			
Depth (in)-		NaCl (
,	Α	В	C	AVG
0.250	40.120	40.034	40.778	40.311
0.500	38.800	38.096	38.661	38.519
0.750	14.764	14.796	14.992	14.851
1.000	1.741	1.760	1.778	1.760
1.250	0.231	0.239	0.230	0.233
1.500	0.200	0.197	0.245	0.214
Sample	TB4A5-B			
Depth (in)-		NaCl (, ,	
,	Α	в	С	AVG

Depth (in)-			Naci (ib/yu j		_
	Deptil (iii)-	Α	В	С	AVG	
	0.250	42.034	42.438	41.743	42.072	
	0.500	27.888	28.041	28.429	28.119	
	0.750	9.596	9.382	9.399	9.459	
	1.000	0.853	0.860	0.858	0.857	
	1.250	0.213	0.201	0.177	0.197	
	1.500	0.187	0.185	0.175	0.182	

Sample TB4A5-C NaCl (lb/yd³) Depth (in) Α В С AVG 0.250 42.774 42.655 42.878 42.312 0.500 30.660 31.023 30.994 31.298 0.750 11.782 11.723 11.775 11.760 1.000 1.323 1.390 1.344 1.320 1.250 0.235 0.219 0.220 0.225 1.500 0.180 0.185 0.180 0.175

Sample	TB5A5-A			
Depth (in)		NaCl (lb/yd ³)		
• • • •	A	В	C	AVG
0.250	36.942	37.036	36.540	36.839
0.500	27.880	27.192	27.133	27.402
0.750	8.601	9.030	9.076	8.902
1.000	0.882	0.914	0.901	0.899
1.250	0.258	0.226	0.246	0.243
1.500	0.243	0.234	0.216	0.231
Sample	TB5A5-B			
Depth (in)	A	NaCl (B	lb/yd°) C	AVG
0.250	38.507	38.630	37.876	38.338
0.500	25.050	25.205	25.461	25.239
0.750	6.064	6.080	6.133	6.092
1.000	0.887	0.886	0.889	0.887
1.250	0.197	0.237	0.202	0.212
1.500	0.197	0.237	0.202	0.212
1.500	0.210	0.170	0.205	0.202
Sample	TB5A5-C			
Depth (in)		NaCl (
• • • •	A	В	С	AVG
0.250	29.159	29.387	29.420	29.322
0.500	11.205	11.169	11.135	11.170
0.750	1.168	1.179	1.203	1.183
1.000	0.247	0.263	0.251	0.254
1.250	0.187	0.177	0.180	0.181
1.500	0.193	0.169	0.159	0.174
Sample	TB6A5-A			
Depth (in)		NaCI (lb/yd ³)	
Depth (in)	A	В	Ċ	AVG
0.250	38.768	38.573	39.209	38.850
0.500	27.109	27.197	26.898	27.068
0.750	5 0 2 2	C 7 4 4	5 5 5 2	5 7 40
	5.923	5.744	5.552	5.740
1.000	0.380	0.387	0.397	0.388
1.000 1.250 1.500	0.380 0.182 0.179	0.387 0.215	0.397 0.175	0.388 0.191
1.000 1.250	0.380 0.182	0.387 0.215 0.149	0.397 0.175 0.167	0.388 0.191
1.000 1.250 1.500 Sample	0.380 0.182 0.179 TB6A5-B	0.387 0.215	0.397 0.175 0.167 Ib/yd ³)	0.388 0.191 0.165
1.000 1.250 1.500 Sample Depth (in)	0.380 0.182 0.179 TB6A5-B	0.387 0.215 0.149 NaCl (B	0.397 0.175 0.167 Ib/yd ³) C	0.388 0.191 0.165 AVG
1.000 1.250 1.500 Sample Depth (in) 0.250	0.380 0.182 0.179 TB6A5-B A 35.020	0.387 0.215 0.149 NaCl (B 35.054	0.397 0.175 0.167 Ib/yd³) <u>C</u> 35.440	0.388 0.191 0.165 AVG 35.171
1.000 1.250 1.500 Sample Depth (in) 0.250 0.500	0.380 0.182 0.179 TB6A5-B A 35.020 22.183	0.387 0.215 0.149 NaCl (B 35.054 22.240	0.397 0.175 0.167 Ib/yd³) C 35.440 22.436	0.388 0.191 0.165 AVG 35.171 22.286
1.000 1.250 1.500 Sample Depth (in) 0.250 0.500 0.750	0.380 0.182 0.179 TB6A5-B A 35.020 22.183 7.441	0.387 0.215 0.149 NaCl (B 35.054 22.240 7.786	0.397 0.175 0.167 Ib/yd³) C 35.440 22.436 7.441	0.388 0.191 0.165 AVG 35.171 22.286 7.556
1.000 1.250 1.500 Sample Depth (in) 0.250 0.500 0.750 1.000	0.380 0.182 0.179 TB6A5-B A 35.020 22.183 7.441 1.501	0.387 0.215 0.149 NaCl (B 35.054 22.240 7.786 1.560	0.397 0.175 0.167 Ib/yd³) C 35.440 22.436 7.441 1.575	0.388 0.191 0.165 AVG 35.171 22.286 7.556 1.545
1.000 1.250 1.500 Sample Depth (in) 0.250 0.500 0.750 1.000 1.250	0.380 0.182 0.179 TB6A5-B A 35.020 22.183 7.441 1.501 0.515	0.387 0.215 0.149 NaCl (B 35.054 22.240 7.786 1.560 0.504	0.397 0.175 0.167 b/yd³) C 35.440 22.436 7.441 1.575 0.516	0.388 0.191 0.165 AVG 35.171 22.286 7.556 1.545 0.512
1.000 1.250 1.500 Sample Depth (in) 0.250 0.500 0.750 1.000	0.380 0.182 0.179 TB6A5-B A 35.020 22.183 7.441 1.501	0.387 0.215 0.149 NaCl (B 35.054 22.240 7.786 1.560	0.397 0.175 0.167 Ib/yd³) C 35.440 22.436 7.441 1.575	0.388 0.191 0.165 AVG 35.171 22.286 7.556 1.545
1.000 1.250 1.500 Sample Depth (in) 0.250 0.500 0.750 1.000 1.250	0.380 0.182 0.179 TB6A5-B A 35.020 22.183 7.441 1.501 0.515	0.387 0.215 0.149 NaCl (B 35.054 22.240 7.786 1.560 0.504 0.196	0.397 0.175 0.167 b/yd³) C 35.440 22.436 7.441 1.575 0.516 0.192	0.388 0.191 0.165 AVG 35.171 22.286 7.556 1.545 0.512
1.000 1.250 1.500 Sample Depth (in) 0.250 0.500 0.750 1.000 1.250 1.500	0.380 0.182 0.179 TB6A5-B A 35.020 22.183 7.441 1.501 0.515 0.189 TB6A5-C	0.387 0.215 0.149 NaCl (B 35.054 22.240 7.786 1.560 0.504 0.196 NaCl (0.397 0.175 0.167 Ib/yd³) C 35.440 22.436 7.441 1.575 0.516 0.192 Ib/yd³)	0.388 0.191 0.165 AVG 35.171 22.286 7.556 1.545 0.512 0.192
1.000 1.250 1.500 Sample Depth (in) 0.250 0.500 0.750 1.000 1.250 1.500 Sample Depth (in)	0.380 0.182 0.179 TB6A5-B A 35.020 22.183 7.441 1.501 0.515 0.189 TB6A5-C A	0.387 0.215 0.149 NaCl (B 35.054 22.240 7.786 1.560 0.504 0.504 0.196 NaCl (B	0.397 0.175 0.167 b/yd³) C 35.440 22.436 7.441 1.575 0.516 0.192 b/yd³) C	0.388 0.191 0.165 AVG 35.171 22.286 7.556 1.545 0.512 0.192 AVG
1.000 1.250 1.500 Sample Depth (in) 0.250 0.750 1.000 1.250 1.500 Sample Depth (in) 0.250	0.380 0.182 0.179 TB6A5-B A 35.020 22.183 7.441 1.501 0.515 0.189 TB6A5-C A 34.628	0.387 0.215 0.149 NaCl (B 35.054 22.240 7.786 1.560 0.504 0.196 NaCl (B 34.927	0.397 0.175 0.167 b/yd³) C 35.440 22.436 7.441 1.575 0.516 0.192 b/yd³) C 34.994	0.388 0.191 0.165 AVG 35.171 22.286 7.556 1.545 0.512 0.192 AVG 34.850
1.000 1.250 1.500 Sample Depth (in) 0.250 0.500 0.750 1.000 1.250 1.500 Sample Depth (in) 0.250 0.500 0.750 0.750 1.500	0.380 0.182 0.179 TB6A5-B A 35.020 22.183 7.441 1.501 0.515 0.189 TB6A5-C B A 34.628 26.235	0.387 0.215 0.149 NaCl (B 35.054 22.240 7.786 1.560 0.504 0.196 NaCl (B 34.927 26.613	0.397 0.175 0.167 b/yd³) C 35.440 22.436 7.441 1.575 0.516 0.192 b/yd³) C 34.994 26.268	0.388 0.191 0.165 AVG 35.171 22.286 7.556 1.545 0.512 0.192 AVG 34.850 26.372
1.000 1.250 1.500 Sample Depth (in) 0.250 0.500 0.750 1.000 1.250 1.500 Sample Depth (in) 0.250 0.500 0.500 0.750 1.500	0.380 0.182 0.179 TB6A5-B A 35.020 22.183 7.441 1.501 0.515 0.189 TB6A5-C B A 34.628 26.235 6.796	0.387 0.215 0.149 NaCl (B 35.054 22.240 7.786 1.560 0.504 0.196 NaCl (B 34.927 26.613 6.818	0.397 0.175 0.167 b/yd³) C 35.440 22.436 7.441 1.575 0.516 0.192 b/yd³) C 34.994 26.268 6.773	0.388 0.191 0.165 35.171 22.286 7.556 1.545 0.512 0.192 AVG 34.850 26.372 6.796
1.000 1.250 1.500 Sample Depth (in) 0.250 0.500 0.750 1.000 1.250 1.500 Sample Depth (in) 0.250 0.500 0.750 1.000 1.250 0.500 0.750 1.000 0.750 1.000 0.750 1.000 0.750 0.500 0.750 1.000 0.750 1.000 0.750 1.000 0.750 1.000 0.750 1.000 0.750 1.000 0.750 1.000 0.750 1.000 1.250 0.750 1.000 1.250 0.750 1.000 1.250 1.500 0.750 1.000 1.250 1.500 0.750 1.500 0.750 1.500 0.750 1.500 0.750 1.500 0.750 1.500 0.750 1.500 0.750 1.500 0.750 1.500 0.750 1.500 0.750 1.500 0.750 1.500 0.750 1.500 0.750 1.500 0.750 0.750 0.500 0.750 0.750 0.500 0.750 1.500 0.750 0.750 0.500 0.750 0.000 0.750 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.0000000 0.00000000	0.380 0.182 0.179 TB6A5-B A 35.020 22.183 7.441 1.501 0.515 0.189 TB6A5-C A 34.628 26.235 6.796 0.663	0.387 0.215 0.149 NaCl (B 35.054 22.240 7.786 1.560 0.504 0.196 NaCl (B 34.927 26.613 6.818 0.739	0.397 0.175 0.167 b/yd³) C 35.440 22.436 7.441 1.575 0.516 0.192 b/yd³) C 34.994 26.268 6.773 0.681	0.388 0.191 0.165 35.171 22.286 7.556 1.545 0.512 0.192 AVG 34.850 26.372 6.796 0.694
1.000 1.250 1.500 Sample Depth (in) 0.250 0.500 0.750 1.000 1.250 1.500 Sample Depth (in) 0.250 0.500 0.500 0.750 1.500	0.380 0.182 0.179 TB6A5-B A 35.020 22.183 7.441 1.501 0.515 0.189 TB6A5-C B A 34.628 26.235 6.796	0.387 0.215 0.149 NaCl (B 35.054 22.240 7.786 1.560 0.504 0.196 NaCl (B 34.927 26.613 6.818	0.397 0.175 0.167 b/yd³) C 35.440 22.436 7.441 1.575 0.516 0.192 b/yd³) C 34.994 26.268 6.773	0.388 0.191 0.165 35.171 22.286 7.556 1.545 0.512 0.192 AVG 34.850 26.372 6.796

Sample	e TB7A5-A			
Depth ((in)	NaCl (lb/yd ³)	
•	, А	В	С	AVG
0.250	32.074	32.755	32.229	32.353
0.500	24.959	25.149	25.450	25.186
0.750	7.114	6.945	6.876	6.978
1.000	0.688	0.705	0.688	0.694
1.250	0.299	0.302	0.316	0.306
1.500	0.286	0.297	0.261	0.281
Sample	e TB7A5-B			
Depth ('in)—	NaCl (
•	, А	В	С	AVG
0.250	33.290	33.678	33.344	33.437
0.500	24.061	24.219	23.935	24.072
0.750	7.425	6.789	7.001	7.072
1.000	0.676	0.705	0.713	0.698
1.250	0.359	0.365	0.411	0.378
1.500	0.332	0.352	0.328	0.337
Sample	• TB7A5-C			
Depth ((in)		lb/yd ³)	
•	A A	В	С	AVG
0.250	34.881	34.993	35.060	34.978
0.500	25.249	24.761	25.114	25.041
0.750	6.988	7.243	7.158	7.130
1.000	1.015	1.050	1.014	1.026
1.250	0.393	0.382	0.391	0.389
1.500	0.324	0.344	0.378	0.349
Sample	TB8A5-A			
	B IDOAD-A		•	
	(in)	NaCl (11/0
Depth (in) <u> </u>	В	С	AVG
Depth ((in) <u>A</u> 34.884	B 34.763	C 34.884	34.844
Depth (0.250 0.500	(in) A 34.884 24.420	B 34.763 24.595	C 34.884 24.354	34.844 24.456
Depth (0.250 0.500 0.750	A 34.884 24.420 4.612	B 34.763 24.595 4.469	C 34.884 24.354 4.727	34.844 24.456 4.603
Depth (0.250 0.500 0.750 1.000	a 34.884 24.420 4.612 0.347	B 34.763 24.595 4.469 0.341	C 34.884 24.354 4.727 0.358	34.844 24.456 4.603 0.349
Depth (0.250 0.500 0.750 1.000 1.250	in) A 34.884 24.420 4.612 0.347 0.232	B 34.763 24.595 4.469 0.341 0.208	C 34.884 24.354 4.727 0.358 0.201	34.844 24.456 4.603 0.349 0.214
Depth (0.250 0.500 0.750 1.000	a 34.884 24.420 4.612 0.347	B 34.763 24.595 4.469 0.341	C 34.884 24.354 4.727 0.358	34.844 24.456 4.603 0.349
Depth (0.250 0.500 0.750 1.000 1.250	A 34.884 24.420 4.612 0.347 0.232 0.219	B 34.763 24.595 4.469 0.341 0.208 0.217	C 34.884 24.354 4.727 0.358 0.201 0.225	34.844 24.456 4.603 0.349 0.214
Depth (0.250 0.500 0.750 1.000 1.250 1.500 Sample	(in) 34.884 24.420 4.612 0.347 0.232 0.219 → TB8A5-B (in)	B 34.763 24.595 4.469 0.341 0.208 0.217 NaCl (C 34.884 24.354 4.727 0.358 0.201 0.225 Ib/yd ³)	34.844 24.456 4.603 0.349 0.214 0.220
Depth (0.250 0.500 0.750 1.000 1.250 1.500 Sample Depth (A 34.884 24.420 4.612 0.347 0.232 0.219 E TB8A5-B (in) A	B 34.763 24.595 4.469 0.341 0.208 0.217 NaCl (B	C 34.884 24.354 4.727 0.358 0.201 0.225 Ib/yd ³) C	34.844 24.456 4.603 0.349 0.214 0.220
Depth (0.250 0.500 0.750 1.000 1.250 1.500 Sample Depth (0.250	A 34.884 24.420 4.612 0.347 0.232 0.219 BBA5-B (in) A 35.966	B 34.763 24.595 4.469 0.341 0.208 0.217 NaCl (B 36.573	C 34.884 24.354 4.727 0.358 0.201 0.225 Ib/yd³) C 36.635	34.844 24.456 4.603 0.349 0.214 0.220 AVG 36.391
Depth (0.250 0.500 0.750 1.000 1.250 1.500 Sample Depth (0.250 0.500	A 34.884 24.420 4.612 0.347 0.232 0.219 BBA5-B in) A 35.966 20.776	B 34.763 24.595 4.469 0.341 0.208 0.217 NaCl (B 36.573 21.571	C 34.884 24.354 4.727 0.358 0.201 0.225 Ib/yd ³) C 36.635 21.227	34.844 24.456 4.603 0.349 0.214 0.220 AVG 36.391 21.191
Depth (0.250 0.500 0.750 1.000 1.250 1.500 Sample Depth (0.250 0.500 0.750	A 34.884 24.420 4.612 0.347 0.232 0.219 BBA5-B in) A 35.966 20.776 2.253	B 34.763 24.595 4.469 0.341 0.208 0.217 NaCl (B 36.573 21.571 2.251	C 34.884 24.354 4.727 0.358 0.201 0.225 (b/yd ³) C 36.635 21.227 2.255	34.844 24.456 4.603 0.349 0.214 0.220 AVG 36.391 21.191 2.253
Depth (0.250 0.500 0.750 1.000 1.250 1.500 Sample Depth (0.250 0.500 0.750 1.000	A 34.884 24.420 4.612 0.347 0.232 0.219 B TB8A5-B (in) A 35.966 20.776 2.253 0.229	B 34.763 24.595 4.469 0.341 0.208 0.217 NaCl (B 36.573 21.571 2.251 0.264	C 34.884 24.354 4.727 0.358 0.201 0.225 Ib/yd³) C 36.635 21.227 2.255 0.244	34.844 24.456 4.603 0.349 0.214 0.220 AVG 36.391 21.191 2.253 0.246
Depth (0.250 0.500 0.750 1.000 1.250 1.500 Sample Depth (0.250 0.500 0.750	A 34.884 24.420 4.612 0.347 0.232 0.219 BBA5-B in) A 35.966 20.776 2.253	B 34.763 24.595 4.469 0.341 0.208 0.217 NaCl (B 36.573 21.571 2.251	C 34.884 24.354 4.727 0.358 0.201 0.225 (b/yd ³) C 36.635 21.227 2.255	34.844 24.456 4.603 0.349 0.214 0.220 AVG 36.391 21.191 2.253
Depth (0.250 0.500 0.750 1.000 1.250 1.500 Sample Depth (0.250 0.500 0.750 1.000	A 34.884 24.420 4.612 0.347 0.232 0.219 B TB8A5-B (in) A 35.966 20.776 2.253 0.229	B 34.763 24.595 4.469 0.341 0.208 0.217 NaCl (B 36.573 21.571 2.251 0.264	C 34.884 24.354 4.727 0.358 0.201 0.225 Ib/yd³) C 36.635 21.227 2.255 0.244	34.844 24.456 4.603 0.349 0.214 0.220 AVG 36.391 21.191 2.253 0.246
Depth (0.250 0.500 0.750 1.000 1.250 1.500 Sample Depth (0.250 0.500 0.750 1.000 1.250	A 34.884 24.420 4.612 0.347 0.232 0.219 TB8A5-B (in) A 35.966 20.776 2.253 0.229 0.181 0.204	B 34.763 24.595 4.469 0.341 0.208 0.217 NaCl (B 36.573 21.571 2.251 0.264 0.202 0.208	C 34.884 24.354 4.727 0.358 0.201 0.225 Ib/yd³) C 36.635 21.227 2.255 0.244 0.201 0.227	34.844 24.456 4.603 0.349 0.214 0.220 AVG 36.391 21.191 2.253 0.246 0.195
Depth (0.250 0.500 0.750 1.000 1.250 1.500 Sample 0.250 0.500 0.750 1.000 1.250 1.250 1.500	A 34.884 24.420 4.612 0.347 0.232 0.219 TB8A5-B (in) A 35.966 20.776 2.253 0.229 0.181 0.204 TB8A5-C	B 34.763 24.595 4.469 0.341 0.208 0.217 NaCl (B 36.573 21.571 2.251 0.264 0.202	C 34.884 24.354 4.727 0.358 0.201 0.225 Ib/yd³) C 36.635 21.227 2.255 0.244 0.201 0.227	34,844 24,456 4,603 0,349 0,214 0,220 AVG 36,391 21,191 2,253 0,246 0,195 0,213
Depth (0.250 0.500 0.750 1.000 1.250 1.500 Sample 0.250 0.500 0.750 1.000 1.250 1.250 1.500 Sample	A 34.884 24.420 4.612 0.347 0.232 0.219 TB8A5-B (in) A 35.966 20.776 2.253 0.229 0.181 0.204	B 34.763 24.595 4.469 0.341 0.208 0.217 NaCl (B 36.573 21.571 2.251 0.264 0.202 0.208	C 34.884 24.354 4.727 0.358 0.201 0.225 Ib/yd³) C 36.635 21.227 2.255 0.244 0.201 0.227	34.844 24.456 4.603 0.349 0.214 0.220 AVG 36.391 21.191 2.253 0.246 0.195
Depth (0.250 0.500 0.750 1.000 1.250 1.500 Sample 0.250 0.500 0.750 1.000 1.250 1.250 1.500	A 34.884 24.420 4.612 0.347 0.232 0.219 TB8A5-B (in) A 35.966 20.776 2.253 0.229 0.181 0.204 TB8A5-C	B 34.763 24.595 4.469 0.341 0.208 0.217 NaCl (B 36.573 21.571 2.251 0.264 0.202 0.208 NaCl (C 34.884 24.354 4.727 0.358 0.201 0.225 Ib/yd³ C 36.635 21.227 2.255 0.244 0.201 0.227 Ib/yd³	34,844 24,456 4,603 0,349 0,214 0,220 AVG 36,391 21,191 2,253 0,246 0,195 0,213
Depth (0.250 0.500 0.750 1.000 1.250 1.500 Sample 0.250 0.500 0.750 1.000 1.250 1.000 1.250 1.500 Sample	A 34.884 24.420 4.612 0.347 0.232 0.219 TB8A5-B (in) A 35.966 20.776 2.253 0.229 0.181 0.204 TB8A5-C (in) A	B 34.763 24.595 4.469 0.341 0.208 0.217 NaCl (B 36.573 21.571 2.251 0.264 0.202 0.208 NaCl (B	C 34.884 24.354 4.727 0.358 0.201 0.225 Ib/yd³ C Ib/yd³ C	34.844 24.456 4.603 0.349 0.214 0.220 AVG 36.391 21.191 2.253 0.246 0.195 0.213 AVG
Depth (0.250 0.500 0.750 1.000 1.250 1.500 Sample 0.250 0.500 0.750 1.000 1.250 1.500 Sample 0.250	A 34.884 24.420 4.612 0.347 0.232 0.219 TB8A5-B (in) A 35.966 20.776 2.253 0.229 0.181 0.204 TB8A5-C (in) A 39.047	B 34.763 24.595 4.469 0.341 0.208 0.217 NaCl (B 36.573 21.571 2.251 0.264 0.202 0.208 NaCl (B 39.517	C 34.884 24.354 4.727 0.358 0.201 0.225 Ib/yd³) C 36.635 21.227 2.255 0.244 0.201 0.227 Ib/yd³) C 39.215	34.844 24.456 4.603 0.349 0.214 0.220 AVG 36.391 21.191 2.253 0.246 0.195 0.213 AVG 39.260
Depth (0.250 0.500 0.750 1.000 1.250 1.500 Sample 0.250 0.500 0.750 1.250 1.500 Sample 0.250 0.250 0.500	A 34.884 24.420 4.612 0.347 0.232 0.219 5 TB8A5-B (in) A 35.966 20.776 2.253 0.229 0.181 0.204 5 TB8A5-C (in) A 39.047 21.721	B 34.763 24.595 4.469 0.341 0.208 0.217 NaCl (B 36.573 21.571 2.251 0.264 0.202 0.208 NaCl (B 39.517 22.069	C 34.884 24.354 4.727 0.358 0.201 0.225 Ib/yd³) C 36.635 21.227 2.255 0.201 0.227 Ib/yd³) C 39.215 21.373	34.844 24.456 4.603 0.349 0.214 0.220 AVG 36.391 21.191 2.253 0.246 0.195 0.213 AVG 39.260 21.721
Depth (0.250 0.500 0.750 1.000 1.250 1.500 Sample 0.250 0.500 0.750 1.000 1.250 1.500 Sample 0.250 0.500 0.250 0.500 0.500 0.750	A 34,884 24,420 4,612 0.347 0.232 0.219 5 TB8A5-B (in) A 35.966 20.776 2.253 0.229 0.181 0.204 5 TB8A5-C (in) A 39.047 21.721 5.747	B 34.763 24.595 4.469 0.341 0.208 0.217 NaCl (B 36.573 21.571 2.251 0.264 0.202 0.208 NaCl (B 39.517 22.069 5.717	C 34.884 24.354 4.727 0.358 0.201 0.225 Ib/yd³) C 36.635 21.227 2.255 0.244 0.201 0.227 Ib/yd³) C 39.215 21.373 5.790	34,844 24,456 4,603 0,349 0,214 0,220 AVG 36,391 21,191 2,253 0,246 0,195 0,213 AVG 39,260 21,721 5,751
Depth (0.250 0.500 0.750 1.000 1.250 1.500 Sample 0.250 0.500 0.750 1.000 1.250 1.500 Sample Depth (0.250 0.500 0.500 0.500 0.750 1.000	A 34,884 24,420 4,612 0.347 0.232 0.219 5 TB8A5-B (in) A 35.966 20.776 2.253 0.229 0.181 0.204 TB8A5-C (in) A 39.047 21.721 5.747 0.415	B 34.763 24.595 4.469 0.341 0.208 0.217 NaCl (B 36.573 21.571 2.251 0.264 0.202 0.208 NaCl (B 39.517 22.069 5.717 0.424	C 34.884 24.354 4.727 0.358 0.201 0.225 Ib/yd³) C 36.635 21.227 2.255 0.244 0.201 0.227 Ib/yd³) C 39.215 21.373 5.790 0.421	34.844 24.456 4.603 0.349 0.214 0.220 AVG 36.391 21.191 2.253 0.246 0.195 0.213 AVG 39.260 21.721 5.751 0.419

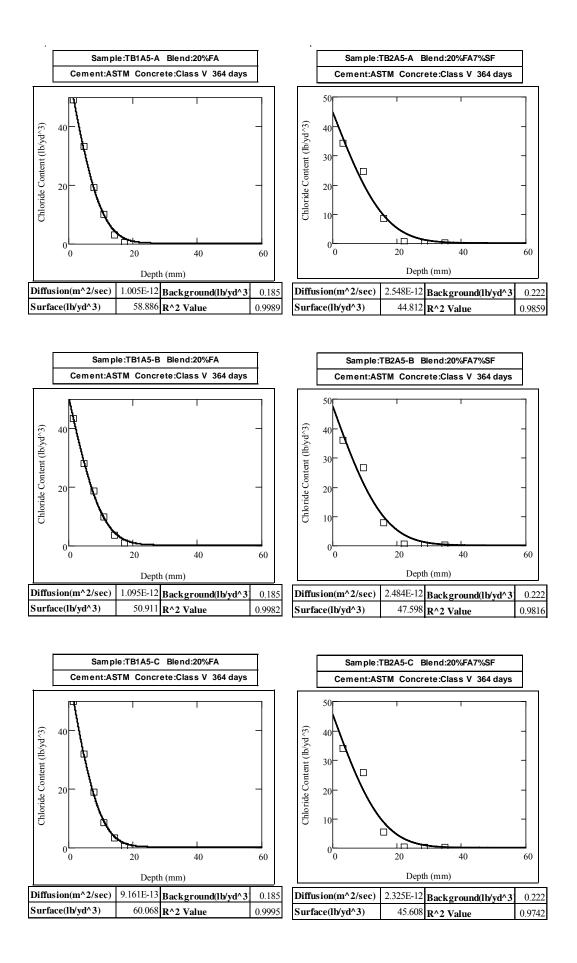
Sample	TB6A5-A1			
Depth (in)-		NaCl (
Deptii (iii)-	Α	В	С	AVG
0.250	37.953	37.605	38.295	37.951
0.500	26.486	26.396	25.962	26.281
0.750	3.461	3.872	3.798	3.710
1.000	1.570	0.163	0.165	0.162
1.250	0.122	0.129	0.126	0.126
1.500	0.125	0.123	0.129	0.126
1.750	0.160	0.160	0.104	0.141
2.000	0.145	0.153	0.159	0.152

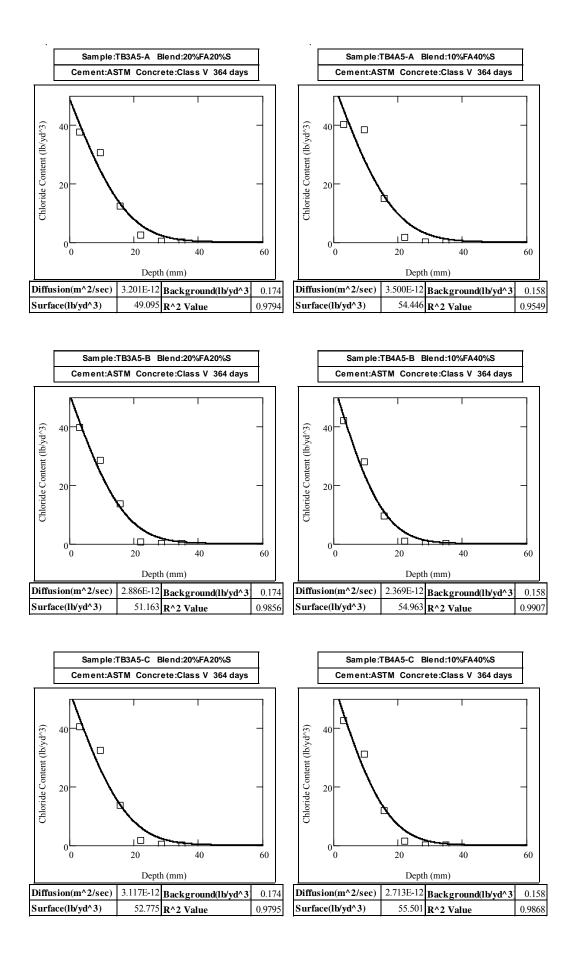
Sample TB6A5-B1

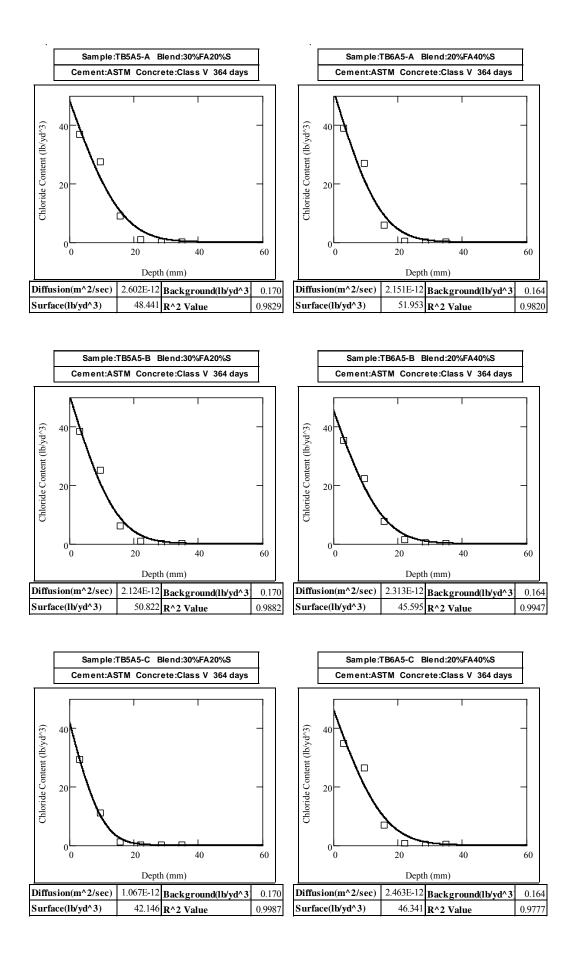
Depth	(in)-	NaCl (lb/yd ³)			
Deptil	(11)-	Α	В	С	AVG
0.250)	37.117	36.893	37.575	37.195
0.500)	25.607	25.216	25.595	25.473
0.750)	7.475	7.857	7.697	7.676
1.000)	1.958	1.915	1.999	1.957
1.250)	1.286	1.266	1.300	1.284
1.500)	1.197	1.179	1.194	1.190
1.750)	1.307	1.284	1.322	1.304
2.000)	1.310	1.288	1.308	1.302

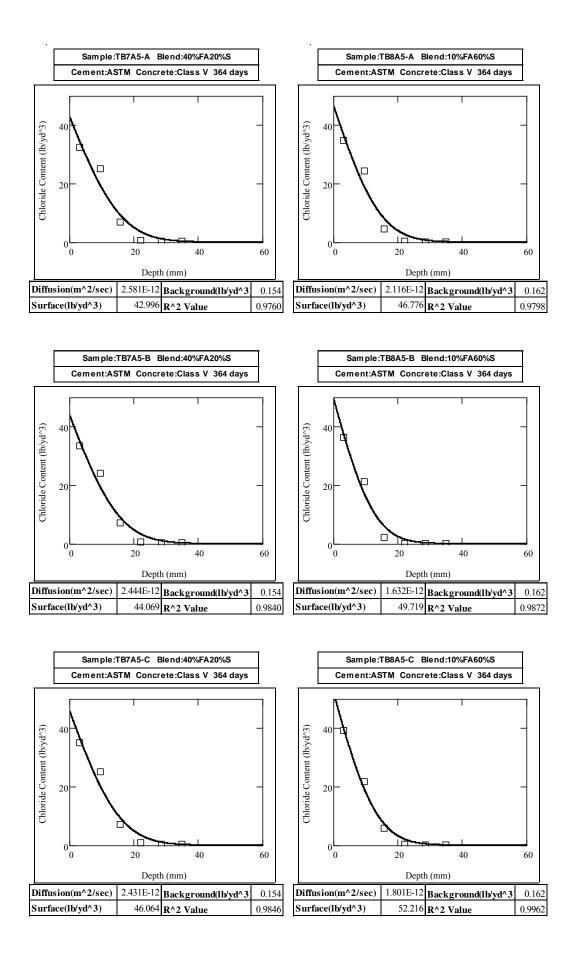
Sample TB6A5-C1

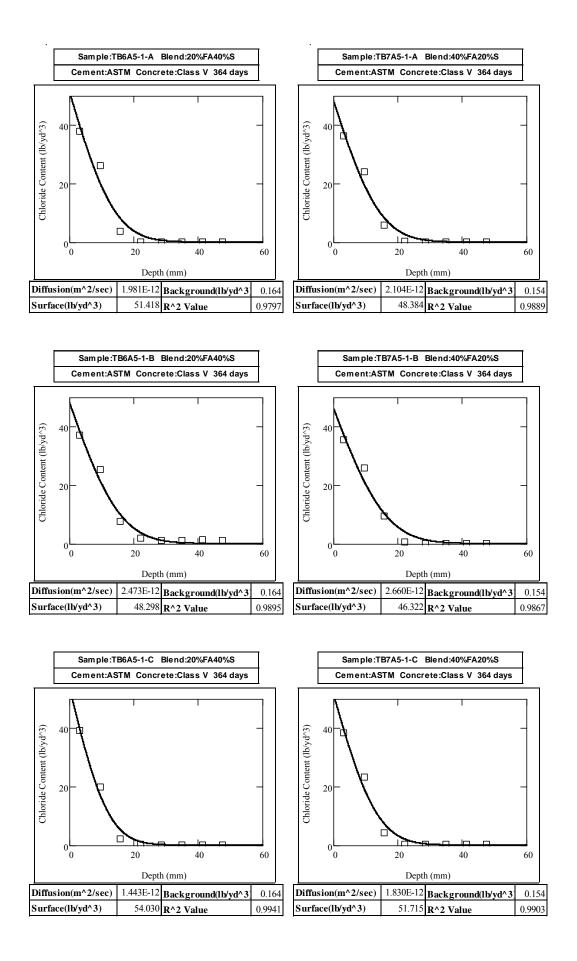
Depth (in)	NaCl (lb/yd³)	
Deptii (^{III)} A	В	С	AVG
0.250	39.536	38.822	39.325	39.228
0.500	20.128	19.700	20.007	19.945
0.750	2.386	2.178	2.356	2.307
1.000	0.306	0.285	0.294	0.295
1.250	0.237	0.236	0.232	0.235
1.500	0.227	0.224	0.299	0.250
1.750	0.208	0.201	0.205	0.205
2.000	0.173	0.173	0.162	0.169


Sample	TB7A5-A1			
Depth (in)-		NaCI (lb/yd³)	
Deptii (iii)-	Α	В	С	AVG
0.250	36.541	35.974	36.684	36.400
0.500	23.835	24.003	24.230	24.023
0.750	5.677	5.677	6.012	5.789
1.000	0.393	0.402	0.431	0.409
1.250	0.143	0.156	0.138	0.146
1.500	0.132	0.190	0.142	0.155
1.750	0.145	0.154	0.150	0.150
2.000	0.160	0.161	0.151	0.157


Sample TB7A5-B1


Depth (in)-	NaCl (lb/yd ³)			
Deptil (III)-	Α	В	С	AVG
0.250	35.541	35.486	35.254	17.896
0.500	29.899	30.252	29.563	15.200
0.750	9.4.4	9.572	9.687	0.750
1.000	0.570	0.583	0.550	0.785
1.250	0.161	0.179	0.178	0.706
1.500	0.226	0.215	0.197	0.863
1.750	0.192	0.181	0.179	0.971
2.000	0.174	0.184	0.174	1.087


Sample TB7A5-C1


Depth (in)-		NaCI (lb/yd³)	
	Α	В	С	AVG
0.250	38.859	38.097	38.494	38.483
0.500	23.263	23.710	22.963	23.312
0.750	4.286	4.239	4.220	4.248
1.000	0.412	0.394	0.369	0.392
1.250	0.393	0.377	0.390	0.387
1.500	0.305	0.332	0.311	0.316
1.750	0.332	0.346	0.332	0.337
2.000	0.403	0.405	0.419	0.409

AASHTO CEMENT - CLASS V (182 DAY EXPOSURE)

Sample	TB1H5-A			
Depth (ii	2)	NaCl (lb/yd³)	
Deptii (ii	" <u>A</u>	В	С	AVG
0.250	37.179	37.197	37.207	37.194
0.500	13.599	13.824	13.774	13.732
0.750	1.130	1.118	1.119	1.122
1.000	0.356	0.332	0.347	0.345
1.250	0.359	0.357	0.354	0.357
1.500	0.292	0.287	0.274	0.284
Sample	TB1H5-B			
		NeCL (lb/ud^{3}	

Sampl	е	TB5H5-A					
Depth	(in)		NaCl (lb/yd ³)				
Depin	(111)	Α	В	С	AVG		
0.250		37.578	37.294	37.160	37.344		
0.500		12.140	12.180	11.957	12.092		
0.750		0.879	0.857	0.815	0.850		
1.000		0.301	0.311	0.276	0.296		
1.250		0.278	0.268	0.260	0.269		
1.500		0.276	0.289	0.259	0.275		

NaCl (lb/yd³) Depth (in) Α AVG в С 0.250 38.724 38.635 38.503 38.621 0.500 14.775 14.883 14.940 14.866 0.750 1.059 1.078 1.090 1.076 1.000 0.291 0.293 0.310 0.298 1.250 0.308 0.284 0.277 0.290 1.500 0.275 0.278 0.283 0.279

Sample	TB5H5-B			
Depth (in)		NaCl (lb/yd³)	
Deptil (ill)	Α	В	С	AVG
0.250	36.259	36.574	35.884	36.239
0.500	17.195	17.344	17.301	17.280
0.750	2.535	2.516	2.550	2.534
1.000	0.405	0.386	0.404	0.398
1.250	0.358	0.394	0.387	0.380
1.500	0.308	0.294	0.325	0.309

Sample TB2H5-A NaCl (lb/yd³) Depth (in) AVG Α в С 0.250 36.140 36.001 36.375 36.172 0.500 0.628 0.630 0.633 0.622 0.750 0.415 0.399 0.391 0.402 1.000 4.972 5.071 5.125 5.056 1.250 0.382 0.419 0.432 0.411 1.500 0.337 0.347 0.328 0.337

в

41.144

12.768

0.479

0.261

0.227

0.235

NaCl (lb/yd³)

С

41.370

12.601

0.458

0.240

0.227

0.226

Sample	TB6H5-A			
Depth (ii	n)	NaCI (lb/yd³)	
Deptil (il	<u>А</u>	В	С	AVG
0.250	34.636	35.217	35.395	35.083
0.500	9.302	9.378	9.378	9.353
0.750	0.944	0.955	0.954	0.951
1.000	0.333	0.351	0.365	0.350
1.250	0.252	0.261	0.255	0.256
1.500	0.261	0.283	0.247	0.264
Sample	TB6H5-B			

AVG

41.159

12.682

0.469

0.248

0.234

0.229

Depth (in)-		NaCl (lb/yd³)	
Deptil (III)-	Α	В	С	AVG
0.250	40.130	39.856	40.087	40.024
0.500	16.054	16.217	16.066	16.112
0.750	2.483	2.505	2.558	2.515
1.000	0.347	0.349	0.357	0.351
1.250	0.249	0.235	0.241	0.242
1.500	0.219	0.204	0.211	0.211

Sample TB2H5-C

TB2H5-B

Α 40.964

12.676

0.471

0.244

0.249

0.227

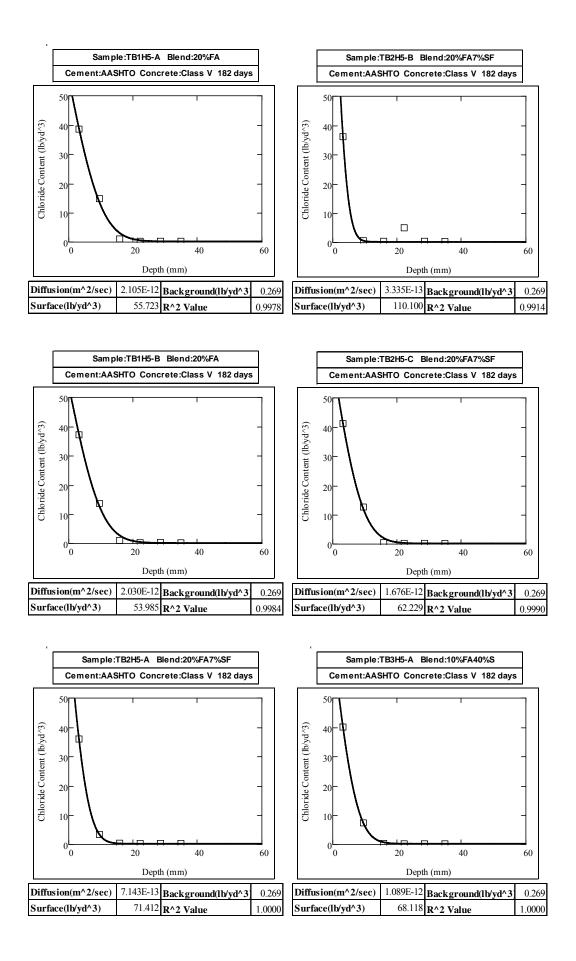
Sample

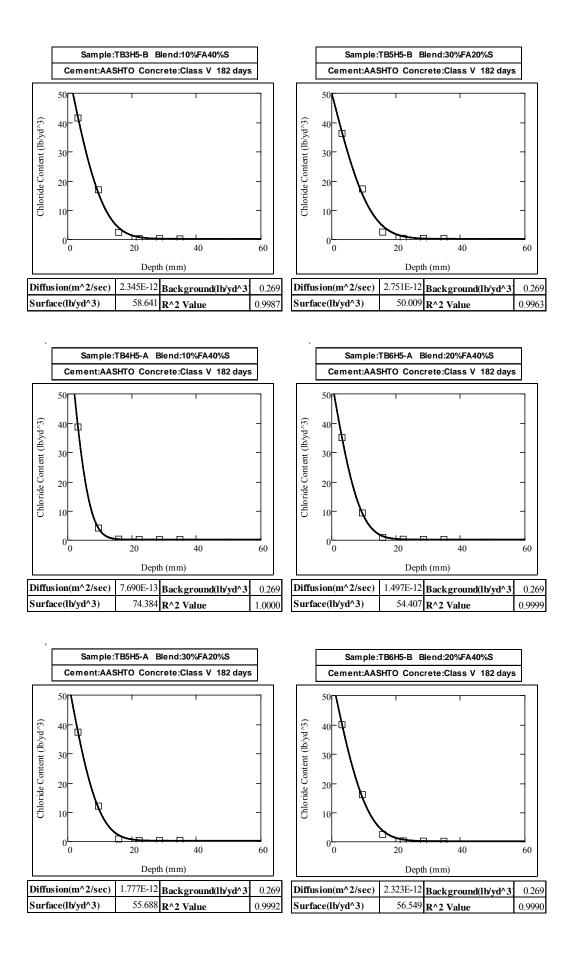
Depth (in)

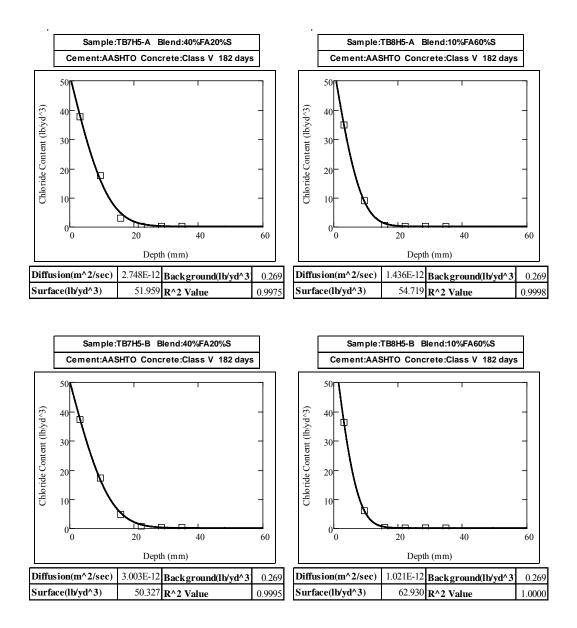
0.250

0.500

0.750


1.000


1.250


1.500

Sample	TB2H5-C				Sample	TB7H5-A			
Depth (in)		NaCl (lb/yd³)		Depth (in)-		NaCl (lb/yd³)	
	A	В	С	AVG	Depth (III)-	Α	В	С	AVG
0.250	36.270	35.918	35.962	36.050	0.250	37.365	37.890	37.890	37.715
0.500	3.469	3.623	3.192	3.428	0.500	17.443	17.979	17.497	17.640
0.750	0.431	0.417	0.414	0.421	0.750	3.037	3.090	2.983	3.037
1.000	0.339	0.350	0.331	0.340	1.000	0.304	0.306	0.314	0.308
1.250	0.339	0.332	0.332	0.334	1.250	0.252	0.252	0.255	0.253
1.500	0.352	0.347	0.345	0.348	1.500	0.239	0.232	0.226	0.232

Sample	TB3H5-A				Sample	TB7H5-B			
Depth (in	`	NaCl (lb/yd³)		Depth (in)	`	NaCI (lb/yd³)	
Depth (in) <u> </u>	В	Ċ	AVG	Depth (in) <u> </u>	В	Ċ	AVG
0.250	40.184	40.078	40.086	40.116	0.250	37.108	37.293	37.526	37.309
0.500	7.385	7.407	7.308	7.367	0.500	17.355	17.279	17.289	17.308
0.750	0.323	0.330	0.339	0.331	0.750	4.427	5.197	4.890	4.838
1.000	0.242	0.195	0.220	0.219	1.000	0.744	0.783	0.786	0.771
1.250	0.222	0.203	0.196	0.207	1.250	0.359	0.373	0.372	0.368
1.500	0.208	0.209	0.207	0.208	1.500	0.377	0.389	0.373	0.380
Sample	TB3H5-B				Sample	TB8H5-A			
Donth (in	`	NaCl (lb/yd³)		Donth (in)	`	NaCI (lb/yd³)	
Depth (in) <u> </u>	В	Ċ	AVG	Depth (in)) <u> </u>	В	Ċ	AVG
0.250	41.388	41.398	41.826	41.537	0.250	35.219	34.781	34.694	34.898
0.500	17.149	17.075	16.726	16.983	0.500	8.998	9.024	8.998	9.007
0.750	2.288	2.585	2.537	2.470	0.750	0.586	0.553	0.580	0.573
1.000	0.257	0.320	0.301	0.293	1.000	0.237	0.229	0.243	0.236
1.250	0.277	0.287	0.295	0.286	1.250	0.192	0.215	0.207	0.205
1.500	0.215	0.264	0.208	0.229	1.500	0.175	0.168	0.177	0.173
Sample	TB4H5-A				Sample	TB8H5-B			
Depth (in	`	NaCl (lb/yd³)		Depth (in)	\	NaCI (lb/yd³)	
Deptii (iii	/ <u> </u>	В	C	AVG	Deptil (III)	/ <u> </u>	В	C	AVG
0.250	38.756	38.806	38.539	38.700	0.250	36.544	36.255	36.156	36.318
0.500	4.181	4.129	4.231	4.180	0.500	6.088	6.145	6.127	6.120
0.750	0.356	0.363	0.355	0.358	0.750	0.366	0.363	0.401	0.377
1.000	0.235	0.255	0.240	0.243	1.000	0.215	0.216	0.220	0.217
1.250	0.226	0.232	0.228	0.229	1.250	0.235	0.233	0.225	0.231
1.500	0.253	0.244	0.235	0.244	1.500	0.196	0.207	0.196	0.200

APPENDIX H – RAPID MIGRATION TEST DATA

 Mix
 TB1A4

 Cast Date
 11/1/2005

Identifier	Date	Age (days)	Sample	Diffusion (m ² /s)	Ave. Diffusion (x10 ⁻¹² m ² /s)
			A	6.05219E-12	
	12/30/2005	56	В	4.73797E-12	4.798
TB1A4			С	3.60472E-12	
IDIA4			А	8.99358E-12	
	1/31/2006	1/31/2006 91 B 7.30791E	7.30791E-12	8.261	
			С	8.48178E-12	

Mix TB2A4 Cast Date 11/3/2005

Identifier	Date	Age (days)	Sample	Diffusion (m ² /s)	Ave. Diffusion (x10 ⁻¹² m ² /s)		
			A	3.16289E-12			
	12/29/2005	56	В	4.73198E-12	3.274		
TB2A4					С	1.92581E-12	
I DZA4			А	3.46287E-12			
	2/2/2006	2/2/2006 91	В	3.38885E-12	3.350		
			С	3.1985E-12			

 Mix
 TB3A4

 Cast Date
 11/8/2005

Identifier	Date	Age (days)	Sample	Diffusion (m ² /s)	Ave. Diffusion (x10 ⁻¹² m ² /s)
			A	4.6576E-12	
	1/3/2006	56	В	5.49363E-12	5.419
TB3A4			С	6.10531E-12	
103/4			A	4.19971E-12	
	2/7/2006	91	В	5.53406E-12	4.732
			С	4.46273E-12	

Mix TB4A4 Cast Date 11/10/2005

Identifier	Date	Age (days)	Sample	Diffusion (m ² /s)	Ave. Diffusion (x10 ⁻¹² m ² /s)
			А	4.24109E-12	
	1/5/2006	56	В	4.27788E-12	4.292
TB4A4			С	4.35658E-12	
TD4A4			A	2.74579E-12	
	2/9/2006	91	В	2.44981E-12	2.373
			С	1.92194E-12	

TB5A4 Mix

Cast Date 11/15/2005

Identifier	Date	Age (days)	Sample	Diffusion (m ² /s)	Ave. Diffusion (x10 ⁻¹² m ² /s)
			А	4.92886E-12	
	1/10/2006	56	В	6.53728E-12	5.840
TB5A4				С	6.05255E-12
1 DJA4			A	2.79893E-12	
	2/14/2006	91	В	2.94618E-12	2.997
			С	3.24586E-12	

 Mix
 TB6A4

 Cast Date
 2/21/2006

Date	Age (days)	Sample	Diffusion (m ² /s)	Ave. Diffusion (x10 ⁻¹² m ² /s)	
			А	-	
4/18/2006	56	В	-	-	
		С	-		
		А	2.83983E-12		
5/23/2006	91	В	3.26538E-12	3.154	
		Ċ	3.35683E-12		
	4/18/2006	4/18/2006 56	4/18/2006 56 A C A	All A - 4/18/2006 56 B - C - - 5/23/2006 91 B 3.26538E-12	

 Mix
 TB7A4

 Cast Date
 2/21/2006

Identifier	Date	Age (days)	Sample	Diffusion (m ² /s)	Ave. Diffusion (x10 ⁻¹² m ² /s)
			А	-	
	4/18/2006	56	В	-	-
TB7A4			С	-	
10/74			А	3.25611E-12	
	5/23/2006	91	В	3.3784E-12	3.953
			С	5.22506E-12	

Mix TB8A4 Cast Date 3/30/2006

Identifier	Date	Age (days)	Sample	Diffusion (m ² /s)	Ave. Diffusion (x10 ⁻¹² m ² /s)
			А	3.31019E-12	3.492
	5/25/2006	56	В	3.30716E-12	
TB8A4			С	3.85789E-12	
T BOA4			А	3.13051E-12	
	6/30/2006	91	В	4.59472E-12	3.564
			С	2.9667E-12	

Mix	TB1A5	
Cast Date	3/30/2006	

Identifier	Date	Age (days)	Sample	Diffusion (m ² /s)	Ave. Diffusion (x10 ⁻¹² m ² /s)
			A	4.52735E-12	6.254
	5/25/2006	56	В	8.44437E-12	
TB1A5			С	5.79018E-12	
TETAS			A	7.87119E-12	
6/30/2006	91	В	8.01398E-12	8.092	
			С	8.39056E-12	

Mix TB2A5

06

Identifier	Date	Age (days)	Sample	Diffusion (m ² /s)	Ave. Diffusion (x10 ⁻¹² m ² /s)
			A	3.80329E-12	
	6/27/2006	56	В	2.4238E-12	3.399
TB2A5			С	3.96974E-12	
I BZAG			A	5.43783E-12	
	8/1/2006	91	В	6.175E-12	5.710
			С	5.51589E-12	

Mix TB3A5 Cast Date 5/2/2006

Identifier	Date	Age (days)	Sample	Diffusion (m ² /s)	Ave. Diffusion (x10 ⁻¹² m ² /s)
			A	4.77571E-12	5.375
	6/27/2006	56	В	6.50949E-12	
TB3A5			С	4.83894E-12	
I DOAD			А	8.82728E-12	
	8/1/2006	91	В	7.76483E-12	7.921
			С	7.17153E-12	

 Mix
 TB4A5

 Cast Date
 5/4/2006

Identifier	Date	Age (days)	Sample	Diffusion (m ² /s)	Ave. Diffusion (x10 ⁻¹² m ² /s)
			A	7.46785E-12	
	6/29/2006	56	В	3.99664E-12	5.226
TB4A5			С	4.21396E-12	
T D4A3			A	3.9488E-12	
	8/3/2006	91	В	2.51639E-12	3.356
			С	3.6019E-12	

 Mix
 TB5A5

 Cast Date
 5/4/2006
 Mix

Identifier	Date	Age (days)	Sample	Diffusion (m ² /s)	Ave. Diffusion (x10 ⁻¹² m ² /s)
			А	5.78297E-12	
	6/29/2006	56	В	5.02183E-12	4.953
TB5A5			С	4.05415E-12	
TBJAJ	8/3/2006	91	А	3.68598E-12	4.766
			В	4.44222E-12	
			С	6.16843E-12	

 Mix
 TB6A5

 Cast Date
 5/9/2006

Identifier	Date	Age (days)	Sample	Diffusion (m ² /s)	Ave. Diffusion (x10 ⁻¹² m ² /s)
			A	4.0733E-12	
	7/4/2006	56	В	4.03423E-12	4.071
TB6A5	TDCAF		С	4.10447E-12	
TBOAS			A	2.50908E-12	
	8/8/2006	91	В	3.33976E-12	2.835
			С	2.65753E-12	

 Mix
 TB7A5

 Cast Date
 5/9/2006

Identifier	Date	Age (days)	Sample	Diffusion (m ² /s)	Ave. Diffusion (x10 ⁻¹² m ² /s)
			A	4.63336E-12	
	7/4/2006	56	В	5.86821E-12	4.997
TB7A5			С	4.48918E-12	
TBIAS			A	3.24447E-12	
	8/8/2006	91	В	3.24853E-12	3.260
			C	3.28603E-12	

 Mix
 TB8A5

 Cast Date
 5/11/2006

Identifier	Date	Age (days)	Sample	Diffusion (m ² /s)	Ave. Diffusion (x10 ⁻¹² m ² /s)
		56	A	4.13148E-12	3.694
	7/6/2006		В	2.94168E-12	
TB8A5			С	4.00894E-12	
I DOAD			A	2.20726E-12	
	8/10/2006	91	В	2.79446E-12	2.559
			С	2.67531E-12	

 Mix
 TB1H4

 Cast Date
 5/11/2006

Identifier	Date	Age (days)	Sample	Diffusion (m ² /s)	Ave. Diffusion (x10 ⁻¹² m ² /s)
		56	А	8.35393E-12	8.611
	7/6/2006		В	9.05857E-12	
TB1H4			С	8.42122E-12	
			A	5.60134E-12	
8/	8/10/2006	91	В	5.96325E-12	5.371
			С	4.54861E-12	

Mix TB2H4

Cast Date 5/1	6/2006
---------------	--------

Identifier	Date	Age (days)	Sample	Diffusion (m ² /s)	Ave. Diffusion (x10 ⁻¹² m ² /s)
			A	2.81839E-12	
	7/11/2006	56	В	2.32762E-12	3.612
TB2H4			С	5.68859E-12	
1 D21 14			A	2.49975E-12	
	8/15/2006	91	В	2.48324E-12	2.665
			C	3.01151E-12	

Mix TB3H4 Cast Date 5/16/2006

Identifier	Date	Age (days)	Sample	Diffusion (m ² /s)	Ave. Diffusion (x10 ⁻¹² m ² /s)
			А	6.22446E-12	
	7/11/2006	56	В	2.32743E-12	4.313
TB3H4			С	4.38711E-12	
1 0304			А	3.71537E-12	
8/15/2006	8/15/2006	91	В	4.25505E-12	3.945
			С	3.86318E-12	

 Mix
 TB4H4

 Cast Date
 5/18/2006

Identifier	Date	Age (days)	Sample	Diffusion (m ² /s)	Ave. Diffusion (x10 ⁻¹² m ² /s)
			A	4.33246E-12	4.429
	7/13/2006	56	В	4.00796E-12	
TB4H4			С	4.94669E-12	
1 D41 14			А	2.70819E-12	
8/17/2006	8/17/2006	91	В	3.48692E-12	3.177
			С	3.33577E-12	

 Mix
 TB5H4

 Cast Date
 5/18/2006

Identifier	Date	Age (days)	Sample	Diffusion (m ² /s)	Ave. Diffusion (x10 ⁻¹² m ² /s)
			А	5.49574E-12	
	7/13/2006	56	В	5.81555E-12	5.240
TB5H4			С	4.40771E-12	
10004			А	3.61978E-12	
	8/17/2006	91	В	2.87643E-12	3.296
			С	3.3917E-12	

Mix TB6H4 Cast Date 5/23/2006

Identifier	Date	Age (days)	Sample	Diffusion (m ² /s)	Ave. Diffusion (x10 ⁻¹² m ² /s)
			А	3.91244E-12	
	7/18/2006	56	В	3.553E-12	3.890
TB6H4	4		С	4.20329E-12	
1 00114			А	5.13082E-12	
	8/22/2006	91	В	3.73939E-12	4.688
			C	5.19505E-12	

Mix TB7H4 Cast Date 5/23/2006

Casi Dale	5/23/2000				
Identifier	Date	Age (days)	Sample	Diffusion (m ² /s)	Ave. Diffusion (x10 ⁻¹² m ² /s)
			A	5.91943E-12	
	7/18/2006	56	В	5.48342E-12	5.342
TB7H4			С	4.62182E-12	
I D/ H4			A	5.67963E-12	
	8/22/2006	91	В	3.39006E-12	4.431

С

Mix TB8H4 Cast Date 5/25/2006

Identifier	Date	Age (days)	Sample	Diffusion (m ² /s)	Ave. Diffusion (x10 ⁻¹² m ² /s)
7/20/2006			A	3.21279E-12	
	56	В	4.79829E-12	3.636	
TB8H4	TDOLLA		С	2.89801E-12	
			А	1.55939E-12	
8/	8/24/2006	91	В	1.83496E-12	2.009
			С	2.63401E-12	

4.22319E-12

Mix	TB1H5
Cast Date	2/1/2007

Identifier	Date	Age (days)	Sample	Diffusion (m ² /s)	Ave. Diffusion (x10 ⁻¹² m ² /s)
			А	3.72233E-12	
	3/29/2007	56	В	4.18442E-12	4.589
TB1H5			С	5.85986E-12	
тына			А	6.44673E-12	
5/3/2007	91	В	5.57973E-12	5.888	
			С	5.63835E-12	

Mix TB2H5 Cast Date 2/1/2007

Identifier	Date	Age (days)	Sample	Diffusion (m ² /s)	Ave. Diffusion (x10 ⁻¹² m ² /s)
3/29/2007			А	2.84781E-12	
	56	В	3.2028E-12	2.965	
TB2H5			С	2.84574E-12	
I D2H3			A	2.60757E-12	
5/3/2007	91	В	2.22684E-12	2.838	
			С	3.68078E-12	

 Mix
 TB3H5

 Cast Date
 2/6/2007

Identifier	Date	Age (days)	Sample	Diffusion (m ² /s)	Ave. Diffusion (x10 ⁻¹² m ² /s)
			А	4.7497E-12	
	4/3/2007	56	В	3.57098E-12	4.522
TB3H5			С	5.24456E-12	
1 0303			A	5.68547E-12	
	5/8/2007	91	В	5.95095E-12	5.818
			С	5.81847E-12	

Mix TB4H5

Cast Date 2/6/2007

Identifier	Date	Age (days)	Sample	Diffusion (m ² /s)	Ave. Diffusion (x10 ⁻¹² m ² /s)
			А	3.89571E-12	
	4/3/2007	56	В	4.27851E-12	5.260
TB4H5			С	7.60723E-12	
10403		91	A	3.91929E-12	3.989
	5/8/2007		В	4.74117E-12	
			С	3.30641E-12	

Mix TB5H5 Cast Date 2/8/2007

Diffusion (m²/s) Ave. Diffusion (x10⁻¹² m²/s) Identifier Date Age (days) Sample 4.02352E-12 4.98751E-12 А 4/5/2007 56 4.289 В С 3.85526E-12 TB5H5 4.40374E-12 Α 5/10/2007 91 В 4.60713E-12 4.411

С

Mix TB6H5

Cast Date 2/8/2007

Identifier	Date	Age (days)	Sample	Diffusion (m ² /s)	Ave. Diffusion (x10 ⁻¹² m ² /s)				
		56	А	4.39649E-12					
	4/5/2007		В	2.63099E-12	3.264				
TB6H5			С	2.76342E-12	1				
1 DOI 15	5/10/2007	91	A	4.16038E-12					
			В	3.76919E-12	3.523				
			C	2.63996E-12					

4.22295E-12

Mix TB7H5 Cast Date 2/15/2007

Diffusion (m²/s) Ave. Diffusion (x10⁻¹² m²/s) Identifier Date Age (days) Sample 3.6459E-12 А 4/12/2007 56 7.715 В 5.68844E-12 С 1.38112E-11 TB7H5 4.94424E-12 A B 5/17/2007 91 6.354 5.82632E-12 С 8.29285E-12

Mix TB8H5 Cast Date 2/15/2007

Diffusion (m²/s) Ave. Diffusion (x10⁻¹² m²/s) Identifier Date Age (days) Sample 3.0401E-12 A 4/12/2007 56 В 2.98284E-12 3.027 С 3.05954E-12 TB8H5 3.80474E-12 А 5/17/2007 91 3.139 B C 3.19484E-12 2.41673E-12

APPENDIX I – SURFACE RESISTIVITY TEST DATA

Mix TB1A4 Cast Date 11/1/2005

Identifier	Date	Days	Sample	0°	90°	180°	270°	0°	90°	180°	270°	Average	Gen. Ave
			A	4.4	4.5	4.5	4.4	4.4	4.5	4.5	4.6	4.5	
	11/2/2005	1	В	4.2	4.4	4.6	4.5	4.3	4.4	4.6	4.4	4.4	4.5
			С	4.6	4.4	4.6	4.5	4.6	4.4	4.4	4.5	4.5	
			A	6.0	6.3	6.3	6.0	6.1	6.3	6.3	6.2	6.2	
	11/4/2005	3	В	5.9	6.1	6.2	6.4	6.1	6.2	6.4	6.1	6.2	6.2
			С	6.2	5.9	6.3	6.0	6.3	6.0	6.3	6.0	6.1	
			A	7.2	7.2	7.4	7.4	7.2	7.4	7.4	7.4	7.3	
	11/8/2005	7	В	6.9	7.3	7.6	7.5	6.9	7.2	7.4	7.5	7.3	7.3
			С	7.4	7.1	7.5	7.3	7.6	7.3	7.6	7.2	7.4	
			A	7.8	7.8	8.0	7.8	7.8	7.8	8.0	8.0	7.9	
	11/15/2005	14	В	7.6	7.9	8.0	8.0	7.4	7.9	8.2	7.9	7.9	7.9
			С	8.1	7.7	8.0	7.8	7.9	7.6	8.3	7.6	7.9	
	11/29/2005	28	A	9.6	9.6	9.9	9.9	9.9	9.7	9.9	10.0	9.8	9.9
TB1A4			В	9.3	9.7	10.1	10.2	9.5	9.9	10.1	10.1	9.9	
			С	10.1	9.7	10.5	9.8	10.1	9.9	10.2	9.9	10.0	
		56	A	14.0	14.0	15.0	14.5	14.0	14.0	14.0	14.0	14.2	14.2
	12/27/2005		В	14.0	14.0	14.0	14.0	14.0	15.0	14.0	14.0	14.1	
			С	15.0	14.0	14.5	14.0	15.0	14.0	14.5	14.0	14.4	
			A	18.5	19.4	19.3	17.9	18.8	18.9	19.0	19.1	18.9	18.6
	1/31/2006	91	В	18.3	19.3	19.4	18.0	18.1	18.4	18.1	18.8	18.6	
			С	19.2	17.9	18.4	17.5	18.2	18.0	19.8	18.5	18.4	
			A	24.4	27.0	27.1	26.5	29.8	26.5	25.3	25.7	26.5	
	5/2/2006	182	В	25.3	26.9	27.2	27.2	25.5	25.1	26.1	27.4	26.3	26.1
			С	25.6	25.1	26.9	24.6	26.0	24.9	25.8	25.1	25.5	
			A	47.2	48.8	47.9	50.9	48.8	47.4	48.3	49.8	48.6	
	11/1/2006	365	В	47.1	49.9	47.4	44.7	42.5	50.5	47.6	48.4	47.3	47.7
			С	45.2	50.5	46.8	45.6	45.9	51.9	45.0	47.4	47.3	1 '

 Mix
 TB2A4

 Cast Date
 11/3/2005

Identifier	Date	Days	Sample	0°	90°	180°	270°	0°	90°	180°	270°	Average	Gen. Aver.
			A	3.1	3.2	3.2	3.2	3.1	3.2	3.2	3.2	3.2	
	11/4/2005	1	В	3.3	3.4	3.2	3.4	3.3	3.4	3.2	3.2	3.3	3.2
			С	3.2	3.4	3.2	3.1	3.3	3.4	3.3	3.1	3.3	
			A	5.1	5.3	5.2	5.2	5.1	5.3	5.2	5.1	5.2	
	11/6/2005	3	В	5.2	5.3	5.1	5.2	5.1	5.4	5.1	5.3	5.2	5.1
			С	5.0	5.0	4.9	4.8	5.1	5.2	5.0	4.9	5.0	
			A	8.3	8.5	8.5	8.6	8.4	8.6	8.8	8.6	8.5	
	11/10/2005	7	В	8.7	8.9	8.6	8.9	8.6	8.9	8.5	8.5	8.7	8.7
			С	8.9	8.8	8.8	8.4	8.9	8.8	8.8	8.6	8.8	
			A	18.1	20.1	20.5	19.9	18.4	20.5	20.9	19.0	19.7	20.0
	11/17/2005	14	В	20.2	20.7	19.4	21.3	20.1	20.7	19.9	20.5	20.4	
			С	20.4	20.2	20.1	18.6	20.4	20.6	20.1	19.9	20.0	
	12/1/2005	28	A	35.7	35.7	35.7	37.6	35.7	37.3	36.3	35.8	36.2	36.7
TB2A4			В	36.9	38.2	35.6	37.8	36.1	36.5	34.9	38.5	36.8	
			С	38.1	37.0	36.6	36.7	38.5	36.5	37.3	35.4	37.0	
		56	A	50.9	51.5	51.7	51.4	54.4	52.0	52.4	52.3	52.1	52.5
	12/29/2005		В	55.0	52.2	49.7	54.2	55.8	53.3	49.0	54.9	53.0	
			С	54.3	55.0	52.0	50.2	53.9	50.6	54.0	50.1	52.5	
			A	56.7	58.3	60.7	58.6	55.2	60.4	62.5	51.7	58.0	58.6
	2/2/2006	91	В	60.8	58.8	54.2	60.4	55.7	58.8	56.6	64.3	58.7	
			С	58.8	59.6	54.9	63.5	57.4	61.5	55.9	61.1	59.1	
			A	61.9	61.4	65.5	61.5	64.2	66.2	67.2	63.2	63.9	
	5/4/2006	182	В	69.4	64.3	67.2	65.4	66.4	64.3	70.0	68.0	66.9	66.0
			С	67.6	65.8	69.0	68.7	65.6	64.2	68.3	68.1	67.2	
			A	110.6	105.6	108.3	111.0	95.0	104.2	109.4	111.0	106.9	
	11/7/2006	369	В	112.1	109.2	110.8	103.0	112.7	104.1	105.1	101.4	107.3	105.6
			С	101.7	103.7	98.8	109.5	105.8	104.8	93.7	101.7	102.5	

Mix	TB3A4
Cast Date	11/8/2005

Identifier	Date	Days	Sample	0°	90°	180°	270°	0°	90°	180°	270°	Average	Gen. Aver
			A	3.5	3.6	3.5	3.6	3.5	3.8	3.5	3.7	3.6	
	11/9/2005	1	В	3.6	3.5	3.5	3.4	3.6	3.5	3.5	3.4	3.5	3.6
			С	3.7	3.5	3.5	3.5	3.7	3.5	3.6	3.5	3.6	
			A	4.8	5.0	4.7	4.9	4.6	5.1	4.6	4.9	4.8	
	11/11/2005	3	В	5.0	4.8	4.8	4.6	5.0	4.8	4.8	4.7	4.8	4.8
			С	5.2	4.6	4.7	4.8	5.2	4.6	4.7	4.9	4.8	
			A	7.7	8.3	7.8	8.4	7.7	8.6	7.7	8.3	8.1	
	11/15/2005	7	В	8.5	7.9	7.8	7.9	8.4	7.9	7.8	8.5	8.1	8.1
			С	8.7	7.7	8.0	8.1	8.6	7.7	8.0	8.0	8.1	
			A	13.7	13.0	14.1	12.4	13.9	13.0	14.3	12.7	13.4	
	11/22/2005	14	В	14.2	13.1	12.8	13.0	14.2	13.3	12.7	12.7	13.3	13.2
			С	13.5	12.9	12.5	13.1	13.5	12.8	13.0	13.2	13.1	
	12/6/2005	28	A	18.8	17.4	18.2	17.6	19.0	17.5	18.1	17.4	18.0	18.3 25.8
TB3A4			В	19.7	18.4	17.6	17.5	19.1	18.7	18.2	18.3	18.4	
			С	19.5	18.1	18.0	18.7	19.2	17.3	18.1	19.0	18.5	
		56	A	26.0	23.7	25.7	24.3	26.6	24.2	27.4	24.6	25.3	
	1/3/2006		В	29.0	25.0	24.5	25.2	27.6	27.3	24.0	26.0	26.1	
			С	27.0	26.1	25.8	25.6	27.8	25.6	24.9	25.6	26.1	
			A	35.6	32.2	31.1	31.3	33.3	29.9	31.6	30.7	32.0	
	2/7/2006	91	В	34.4	33.3	31.1	31.2	33.4	34.1	31.2	32.3	32.6	32.5
			С	33.8	32.2	32.9	32.5	36.9	30.8	31.4	32.5	32.9	
			A	45.2	50.8	44.8	46.9	45.9	52.9	46.6	49.6	47.8	
	5/9/2006	182	В	50.9	45.6	44.1	49.2	55.0	45.0	44.4	42.9	47.1	47.5
			С	49.2	49.1	47.8	46.9	49.5	45.5	45.2	46.3	47.4	7
			A	82.1	80.5	76.4	68.2	79.1	78.2	79.0	72.7	77.0	
	11/7/2006	364	В	90.3	74.4	73.8	80.1	88.8	80.2	80.6	77.8	80.8	77.2
			С	82.5	74.2	69.2	75.3	73.3	66.7	77.4	72.2	73.9	

Mix TB4A4 Cast Date 11/10/2005

Identifier	Date	Days	Sample	0°	90°	180°	270°	0°	90°	180°	270°	Average	Gen. Aver.
			A	3.0	3.1	3.1	3.1	3.0	3.3	3.1	3.1	3.1	
	11/11/2005	1	В	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1
			С	3.1	3.1	3.0	3.1	3.1	3.1	3.1	3.1	3.1	
			A	4.8	5.3	5.0	5.0	4.8	5.3	5.0	5.0	5.0	
	11/13/2005	3	В	4.9	4.9	5.1	4.8	4.9	4.9	5.1	4.7	4.9	5.0
			С	5.0	4.9	4.9	5.0	4.8	5.0	4.8	5.0	4.9	
			A	10.8	11.7	10.9	10.8	10.5	11.7	11.0	10.5	11.0	
	11/17/2005	7	В	11.0	10.8	11.5	10.8	11.0	10.8	11.4	10.7	11.0	10.9
			С	10.8	10.7	10.4	10.8	10.8	10.8	10.6	10.9	10.7	1
			A	18.3	20.1	18.8	18.6	18.2	20.2	19.0	18.5	19.0	18.7
	11/24/2005	14	В	19.3	18.9	20.1	18.2	18.3	18.9	20.2	17.8	19.0	
			С	18.7	18.3	17.5	18.7	18.3	18.3	17.8	18.6	18.3	
	12/8/2005	28	A	23.3	25.5	23.7	23.8	23.8	24.1	24.1	23.8	24.0	24.1
TB4A4			В	24.3	24.5	25.6	23.3	23.3	23.9	26.1	23.1	24.3	
			С	23.4	23.3	23.5	24.4	25.2	23.6	22.8	24.8	23.9	
		56	A	30.3	29.5	29.7	28.1	27.2	30.6	30.3	28.5	29.3	30.4
	1/5/2006		В	29.5	29.3	34.5	31.9	30.1	29.9	33.8	31.4	31.3	
			С	31.4	30.3	29.3	29.6	31.2	32.1	30.8	30.1	30.6	
			A	36.0	36.6	35.0	36.4	35.8	37.3	35.5	35.2	36.0	
	2/9/2006	91	В	37.1	36.0	38.5	36.4	39.1	36.0	39.6	36.8	37.4	36.5
			С	38.8	34.7	34.2	37.3	37.4	35.1	35.6	35.4	36.1	
			A	49.4	48.2	49.3	46.3	48.4	49.8	48.0	49.0	48.6	
	5/11/2006	182	В	50.4	47.7	53.7	49.9	50.0	47.1	53.5	48.7	50.1	49.5
			С	53.9	51.6	48.0	42.5	51.4	52.5	50.0	49.8	50.0	1
			A	90.6	88.6	88.4	89.8	89.1	89.9	87.8	89.8	89.3	
	11/22/2006	377	В	92.5	92.3	94.1	88.1	92.6	89.3	94.2	87.8	91.4	89.7
			С	91.8	86.4	85.2	90.4	90.0	89.6	84.5	89.0	88.4	1

Mix	TB5A4
Cast Date	11/15/2005

Identifier	Date	Days	Sample	0°	90°	180°	270°	0°	90°	180°	270°	Average	Gen. Aver.
			A	2.6	2.7	2.6	2.6	2.7	2.6	2.6	2.6	2.6	
	11/16/2005	1	В	2.6	2.6	2.5	2.7	2.6	2.7	2.5	2.7	2.6	2.7
			С	2.7	2.7	2.8	2.7	2.7	2.7	2.8	2.7	2.7	1
			A	4.2	4.2	3.9	4.0	4.2	4.2	3.9	4.0	4.1	
	11/18/2005	3	В	4.1	4.2	3.9	4.2	4.0	4.2	4.0	4.2	4.1	4.2
			С	4.2	4.2	4.4	4.3	4.3	4.2	4.3	4.3	4.3	1
			A	8.1	7.6	7.4	7.6	8.2	8.0	7.5	7.7	7.8	
	11/22/2005	7	В	7.6	7.7	7.6	8.2	7.5	7.8	7.6	8.3	7.8	7.9
			С	8.0	8.1	8.2	8.0	7.9	7.8	8.3	7.8	8.0	1
			A	13.9	13.9	12.6	13.5	13.9	13.7	12.7	13.3	13.4	
	11/29/2005	14	В	14.3	15.9	15.0	14.9	15.1	15.9	16.1	15.3	15.3	14.9
			С	16.6	16.4	14.7	15.7	16.0	15.7	15.6	16.1	15.9	
			A	22.4	21.5	20.4	22.1	22.5	21.8	20.2	22.5	21.7	
TB5A4	12/13/2005	28	В	20.4	23.9	22.1	22.9	21.6	23.6	21.8	22.8	22.4	22.3
			С	22.8	21.9	23.2	22.5	23.7	22.6	23.4	22.6	22.8	
			A	34.9	32.9	29.8	31.4	34.8	34.2	30.2	32.0	32.5	
	1/10/2006	56	В	33.0	34.0	33.3	33.4	33.5	34.1	31.2	34.2	33.3	30.7
			С	21.1	26.1	29.3	27.6	23.8	22.9	27.7	31.7	26.3	
			A	43.5	41.8	41.0	43.9	45.3	43.6	41.8	41.2	42.8	
	2/14/2006	91	В	41.9	43.4	45.4	47.2	41.5	44.4	43.7	47.3	44.4	43.1
			С	41.8	42.7	41.8	42.0	41.2	42.1	42.7	43.6	42.2	
			A	62.9	60.0	58.5	59.8	62.4	61.2	64.2	59.2	61.0	
	5/16/2006	182	В	61.6	63.3	62.1	63.6	59.4	61.0	63.5	63.9	62.3	62.3
			С	65.1	65.2	61.5	64.1	64.4	63.2	63.1	62.4	63.6	
			A	110.7	113.7	115.1	127.5	114.2	116.0	125.2	124.2	118.3	
	11/14/2006	364	В	129.5	117.8	140.2	129.5	129.6	118.8	139.2	128.4	129.1	123.5
			С	119.6	122.9	123.9	126.7	122.6	121.5	130.2	118.0	123.2	1

 Mix
 TB6A4

 Cast Date
 2/21/2006

Identifier	Date	Days	Sample	0°	90°	180°	270°	0°	90°	180°	270°	Average	Gen. Aver.
			A	3.0	2.9	2.7	2.9	3.2	3.2	3.2	3.2	3.0	
	2/22/2006	1	В	3.4	3.3	3.3	3.3	3.3	3.2	3.2	3.3	3.3	3.3
			С	3.3	3.4	3.5	3.4	3.4	3.6	3.6	3.5	3.5	1
			A	4.6	4.5	4.5	4.5	4.7	4.5	4.5	4.5	4.5	
	2/24/2006	3	В	4.9	4.7	4.6	4.5	4.5	4.4	4.5	4.5	4.6	4.5
			С	4.4	4.2	4.5	4.4	4.6	4.5	4.6	4.4	4.5	
			A	10.9	10.6	10.8	10.8	11.0	10.6	10.9	11.0	10.8	
	2/28/2006	7	В	11.0	10.9	10.4	10.5	10.9	10.7	10.5	10.3	10.7	10.7
			С	10.8	10.8	11.0	10.3	10.4	10.6	10.8	10.5	10.7	
			A	20.7	20.0	20.4	19.7	21.4	20.1	20.3	19.9	20.3	
	3/7/2006	14	В	19.9	19.6	20.1	20.3	19.6	19.1	19.8	20.1	19.8	20.5
			С	19.8	19.0	21.4	20.0	23.2	23.6	23.0	21.2	21.4	
			A	28.9	28.3	28.8	29.1	29.6	29.1	28.7	28.8	28.9	
TB6A4	3/21/2006	28	В	29.4	30.1	29.0	27.9	28.6	29.0	28.0	28.0	28.8	28.8
			С	28.9	28.7	28.9	27.8	28.7	27.9	28.7	29.4	28.6	
			A	42.4	40.5	40.2	40.2	39.0	39.9	40.2	40.5	40.4	
	4/18/2006	56	В	42.0	40.0	38.9	39.7	42.5	42.5	38.2	38.7	40.3	40.0
			С	39.1	40.7	40.7	37.5	39.2	38.6	41.2	38.2	39.4	
			A	47.8	47.2	47.7	44.6	47.2	46.7	49.2	46.4	47.1	
	5/23/2006	91	В	48.5	49.8	47.5	46.7	47.9	49.7	44.0	47.2	47.7	47.0
			С	46.4	45.8	43.6	45.8	47.0	46.8	45.6	50.0	46.4	
			A	102.0	98.7	95.4	99.1	97.5	98.6	95.4	98.6	98.2	
	11/24/2006	276	В	101.8	96.7	95.5	93.4	100.5	98.0	93.9	94.4	96.8	97.3
			С	97.3	96.0	100.3	95.0	95.8	96.0	101.1	94.2	97.0	<u> </u>
			А	123.5	122.9	127.5	121.7	127.7	120.7	124.3	117.9	123.3	
	2/20/2007	364	В	126.8	119.7	119.0	129.2	121.4	117.9	128.2	130.0	124.0	122.2
			С	123.6	121.1	116.9	117.2	122.1	118.8	116.2	119.2	119.4	

Mix	TB7A4
Cast Date	2/21/2006

Identifier	Date	Days	Sample	0°	90°	180°	270°	0°	90°	180°	270°	Average	Gen. Aver
			А	3.2	3.4	3.2	3.4	3.1	2.8	2.7	2.8	3.1	
	2/22/2006	1	В	2.7	2.7	2.8	2.8	2.7	2.6	2.7	2.8	2.7	2.9
			С	2.9	2.8	2.8	2.8	2.8	2.8	2.9	2.9	2.8	1
			A	4.2	3.9	3.8	3.7	4.2	4.3	4.4	4.5	4.1	
	2/24/2006	3	В	4.0	4.1	4.1	4.0	3.6	3.7	3.8	3.8	3.9	4.1
			С	3.9	3.8	3.9	3.9	4.5	4.5	4.5	4.2	4.2	
			A	7.5	7.5	7.6	7.5	7.5	7.9	7.2	7.3	7.5	
	2/28/2006	7	В	7.4	7.6	7.6	7.6	7.5	7.5	7.5	7.6	7.5	7.5
			С	7.5	7.7	7.5	7.8	7.6	7.5	7.5	7.4	7.6	
			A	15.6	14.8	14.2	14.9	15.2	15.3	15.8	15.5	15.2	
	3/7/2006	14	В	15.2	17.3	17.6	16.7	16.5	16.9	17.0	16.8	16.8	16.3
			С	17.5	16.7	17.3	17.0	17.0	17.0	17.1	16.9	17.1	1
			A	24.5	23.5	21.1	22.8	23.8	23.1	23.3	23.0	23.1	
TB7A4	3/21/2006	28	В	22.9	23.9	24.8	23.9	22.7	24.0	24.2	24.1	23.8	23.6
			С	23.3	24.6	22.7	24.7	24.3	24.9	22.9	24.0	23.9	
			A	36.0	37.6	31.1	34.9	38.1	36.9	32.5	34.8	35.2	
	4/18/2006	56	В	37.4	38.6	39.7	37.4	37.0	38.3	39.4	37.3	38.1	36.9
			С	37.8	39.6	35.1	38.3	37.6	38.5	34.6	36.1	37.2	
			A	46.9	48.2	45.6	47.0	47.8	47.8	44.0	48.4	47.0	
	5/23/2006	91	В	49.0	48.2	51.7	49.4	49.8	50.0	51.4	49.4	49.9	49.0
			С	49.3	52.0	49.6	48.7	50.7	52.3	50.0	49.8	50.3	
			A	117.4	121.1	112.6	121.3	116.3	116.8	107.7	115.4	116.1	
	11/24/2006	276	В	116.2	119.4	124.0	118.1	115.9	118.6	121.6	115.8	118.7	119.4
			С	121.6	128.7	122.7	122.0	122.3	123.7	118.8	128.4	123.5	
			A	162.2	152.2	140.2	150.2	158.6	158.6	154.3	146.1	152.8	
	2/20/2007	364	В	154.4	158.8	156.6	149.8	150.3	141.1	149.3	147.3	151.0	152.1
			С	156.3	155.6	148.2	156.9	149.7	156.0	145.0	151.7	152.4	

 Mix
 TB8A4

 Cast Date
 3/30/2006

Identifier	Date	Days	Sample	0°	90°	180°	270°	0°	90°	180°	270°	Average	Gen. Aver.
			A	2.9	3.0	2.9	2.9	2.9	3.0	2.8	2.9	2.9	
	3/31/2006	1	В	3.0	3.1	2.9	3.0	2.9	3.0	3.1	3.1	3.0	3.0
			С	3.2	3.0	3.1	3.2	3.2	2.9	3.1	3.2	3.1	1
			A	7.5	7.3	7.1	6.8	7.3	7.2	6.9	7.1	7.2	
	4/2/2006	3	В	6.8	6.9	7.1	6.9	7.0	7.1	7.2	7.1	7.0	7.2
			С	7.7	6.9	7.8	7.7	7.5	7.3	7.7	7.4	7.5	
			A	16.8	16.6	16.3	16.8	17.2	17.2	17.3	16.4	16.8	
	4/6/2006	7	В	16.5	16.7	18.2	16.9	16.4	17.8	17.9	16.8	17.2	17.5
			С	19.7	18.9	18.3	16.9	19.2	19.0	18.5	17.4	18.5	
			A	27.8	27.4	25.3	24.9	27.3	26.5	26.1	26.4	26.5	
	4/13/2006	14	В	23.8	28.1	25.7	26.6	24.0	24.4	25.8	25.6	25.5	26.9
			С	30.1	29.1	28.8	28.9	29.6	25.8	29.3	28.5	28.8	1
			A	36.9	38.4	35.9	34.3	37.2	37.5	35.8	34.5	36.3	
TB8A4	4/27/2006	28	В	33.3	33.9	35.5	35.1	37.7	34.8	35.9	35.8	35.3	36.5
			С	39.7	35.8	37.7	38.8	37.1	39.6	35.5	39.2	37.9	1
			A	44.6	46.9	44.0	41.1	44.6	43.7	44.4	44.4	44.2	
	5/25/2006	56	В	44.4	41.4	41.0	42.8	43.0	38.3	42.0	44.6	42.2	43.8
			С	48.6	42.6	45.2	44.2	48.2	43.7	44.2	43.8	45.1	1
			A	59.2	56.8	54.5	55.0	57.5	56.7	56.8	55.4	56.5	
	6/29/2006	91	В	49.7	52.4	55.5	55.8	47.5	53.6	52.4	54.3	52.7	56.3
			С	62.6	51.6	61.7	60.3	61.8	59.7	60.9	59.7	59.8	
			A	99.7	97.3	97.4	93.8	96.5	100.0	98.2	94.9	97.2	
	11/24/2006	239	В	95.2	95.0	101.1	93.1	92.8	95.7	102.0	97.4	96.5	99.7
			С	108.8	102.4	106.6	102.8	108.6	101.3	108.3	104.5	105.4	
			А	108.8	117.0	110.7	110.1	114.5	113.7	109.4	106.6	111.4	
	3/29/2007	364	В	106.8	102.2	113.4	107.9	113.8	101.9	102.4	109.8	107.3	111.7
			С	123.9	112.4	120.4	108.2	124.9	108.0	117.4	116.4	116.5	1

Mix	TB1A5
Cast Date	3/30/2006

Identifier	Date	Days	Sample	0°	90°	180°	270°	0°	90°	180°	270°	Average	Gen. Aver
			A	4.9	5.0	5.1	4.9	5.1	5.0	5.0	4.9	5.0	
	3/31/2006	1	В	4.6	4.6	4.6	4.6	4.6	4.6	4.7	4.8	4.6	4.8
			С	4.6	4.6	4.7	4.8	4.7	4.8	4.7	4.7	4.7	
			A	6.1	6.3	6.7	6.5	6.2	6.4	6.5	6.6	6.4	
	4/2/2006	3	В	6.3	6.1	6.2	6.2	6.2	6.0	6.2	6.2	6.2	6.3
			С	6.2	6.4	6.4	6.3	6.3	6.2	6.4	6.3	6.3	
			A	7.9	8.6	8.6	8.9	8.1	10.2	8.6	9.2	8.8	
	4/6/2006	7	В	8.3	8.5	8.5	8.0	7.9	7.9	7.2	7.2	7.9	8.1
			С	7.4	8.1	8.0	7.6	7.4	7.7	7.6	7.3	7.6	
			A	7.2	7.9	7.7	7.6	7.4	7.8	7.9	7.3	7.6	
	4/13/2006	14	В	7.2	7.2	7.2	7.3	7.3	7.4	7.3	7.4	7.3	7.5
			С	7.4	7.9	7.5	7.5	7.3	7.4	7.8	7.6	7.6	
			A	9.2	9.6	9.6	9.4	9.1	9.6	9.7	9.5	9.5	
TB1A5	4/27/2006	28	В	9.1	8.9	8.8	9.4	8.9	8.9	9.1	9.0	9.0	9.3
			С	9.1	9.2	9.6	9.2	9.2	9.1	9.3	9.7	9.3	
			A	13.5	13.8	14.1	13.7	13.2	14.3	14.3	14.1	13.9	
	5/25/2006	56	В	13.6	13.2	13.5	13.7	13.8	13.4	13.0	13.7	13.5	13.6
			С	13.4	13.2	14.1	13.5	13.2	13.2	14.1	13.6	13.5	
			A	20.5	20.4	21.0	20.5	20.3	21.0	20.8	20.7	20.7	
	6/29/2006	91	В	19.5	18.9	19.7	20.0	19.2	19.2	19.3	19.9	19.5	20.0
			С	19.2	19.3	21.0	20.6	19.3	19.6	20.7	20.0	20.0	
			A	44.7	46.1	44.9	45.0	42.3	44.2	44.7	45.0	44.6	
	11/24/2006	239	В	41.5	40.8	42.0	43.4	42.0	40.8	41.5	42.8	41.9	43.4
			С	42.5	42.6	45.4	44.1	42.6	42.6	45.4	44.0	43.7	
			A	48.4	48.9	50.0	50.1	45.3	51.0	50.3	49.9	49.2	
	3/29/2007	364	В	49.9	47.5	48.0	50.7	48.5	47.7	46.8	47.8	48.4	48.5
			С	46.6	46.4	49.2	50.0	47.5	47.6	46.8	49.8	48.0	

 Mix
 TB2A5

 Cast Date
 5/2/2006

Identifier	Date	Days	Sample	0°	90°	180°	270°	0°	90°	180°	270°	Average	Gen. Aver
			А	4.6	4.5	4.4	4.3	7.7	7.1	6.4	4.3	5.4	
	5/3/2006	1	В	4.3	4.1	4.5	4.6	4.3	4.2	4.5	4.5	4.4	4.9
			С	15.3	13.8	14.7	13.3	12.3	11.0	9.9	10.1	12.6	1
			A	5.7	5.6	5.7	5.6	5.8	5.6	5.8	5.9	5.7	
	5/5/2006	3	В	5.8	5.7	5.8	5.8	5.7	5.7	5.7	5.8	5.8	5.7
			С	5.5	5.6	5.6	5.7	12.8	10.6	11.6	12.2	5.6	
			A	9.9	9.7	9.8	9.6	10.0	10.3	9.9	9.8	9.9	
	5/9/2006	7	В	9.8	9.7	10.0	10.1	9.7	9.8	9.1	10.1	9.8	10.0
			С	10.1	10.3	10.3	9.9	11.0	11.3	10.5	10.0	10.4	
			A	22.1	22.5	22.9	22.5	22.0	23.0	22.4	21.7	22.4	
	5/16/2006	14	В	21.0	21.2	22.7	23.4	22.3	20.9	23.0	23.0	22.2	22.3
			С	21.8	22.2	23.6	22.8	21.5	22.3	23.3	21.3	22.4	1
			A	40.8	38.7	41.5	41.3	41.7	39.7	41.6	40.2	40.7	
TB2A5	5/30/2006	28	В	42.9	41.9	42.7	39.2	41.3	42.4	43.0	39.3	41.6	41.2
			С	38.7	37.5	41.5	41.4	44.7	40.2	45.2	41.2	41.3	
			A	62.5	56.1	61.6	61.5	63.1	58.4	60.6	60.3	60.5	
	6/27/2006	56	В	62.7	61.4	63.0	55.1	63.0	61.5	65.7	57.2	61.2	61.1
			С	62.4	58.1	65.8	60.1	58.7	60.2	65.2	61.3	61.5	
			A	74.2	68.7	70.0	67.3	73.3	67.6	70.3	67.3	69.8	
	8/1/2006	91	В	73.8	70.1	72.3	72.9	73.2	68.7	74.7	67.0	71.6	70.3
			С	69.1	66.7	73.1	71.7	68.3	64.4	73.4	69.4	69.5	
			A	104.0	102.0	93.6	106.4	102.6	104.7	93.6	107.3	101.8	
	11/1/2006	183	В	115.4	103.1	107.2	104.5	108.7	100.7	102.6	102.3	105.6	102.9
			С	99.0	92.9	109.3	101.7	96.6	100.8	107.4	102.4	101.3	
			А	131.3	132.4	128.9	128.7	130.6	133.5	130.3	126.4	130.3	
	5/1/2007	364	В	128.0	129.2	139.5	128.2	132.2	129.7	131.2	125.0	130.4	129.8
			С	126.9	131.7	130.2	127.5	124.5	127.7	133.2	128.5	128.8	

Mix	TB3A5
Cast Date	5/2/2006

Identifier	Date	Days	Sample	0°	90°	180°	270°	0°	90°	180°	270°	Average	Gen. Aver
			A	14.7	12.2	12.2	11.7	4.2	5.5	4.2	3.3	4.3	
	5/3/2006	1	В	3.3	2.8	1.9	6.8	1.3	2.2	1.8	1.6	2.7	2.7
			С	1.6	1.6	1.5	1.3	0.5	1.0	1.1	1.2	1.2	
			A	8.1	8.4	8.7	8.2	6.4	5.8	5.3	5.2	7.0	
	5/5/2006	3	В	5.1	4.9	5.0	5.0	5.1	5.0	5.0	5.1	5.0	5.8
			С	5.2	5.1	5.3	5.2	4.9	5.3	5.5	5.7	5.3	
			A	8.1	8.7	8.5	8.0	8.5	8.7	8.5	8.5	8.4	
	5/9/2006	7	В	7.9	8.0	8.2	8.5	8.2	7.9	8.0	8.4	8.1	8.3
			С	8.1	8.3	8.6	8.5	8.3	8.4	8.4	8.3	8.4	
			A	12.4	13.1	13.3	12.9	12.4	12.8	13.1	13.2	12.9	
	5/16/2006	14	В	12.3	12.6	12.3	12.1	12.1	12.6	12.4	12.2	12.3	12.6
			С	12.5	12.8	13.1	12.4	12.5	13.1	13.0	12.2	12.7	1
			A	17.5	19.5	19.7	18.7	18.0	19.4	18.9	18.8	18.8	
TB3A5	5/30/2006	28	В	18.4	17.4	17.6	18.7	18.0	17.2	18.0	18.2	17.9	18.5
			С	17.9	18.5	18.8	19.0	18.5	18.7	19.5	19.7	18.8	
			A	27.8	27.9	28.9	28.6	27.1	28.1	29.0	27.9	28.2	
	6/27/2006	56	В	27.7	25.5	26.5	28.2	26.9	25.2	26.3	27.2	26.7	27.6
			С	26.8	26.8	28.3	28.7	27.8	28.2	29.1	28.9	28.1	
			A	35.0	37.0	37.1	34.7	32.8	37.1	37.4	34.3	35.7	
	8/1/2006	91	В	34.6	34.0	34.0	36.6	34.0	32.5	34.8	35.8	34.5	35.4
			С	34.9	35.5	36.2	37.6	35.5	34.3	37.6	37.4	36.1	
			A	62.1	64.7	70.1	62.8	64.1	65.1	66.0	70.0	65.6	
	11/1/2006	183	В	60.0	61.8	67.6	60.4	57.7	61.5	66.7	61.6	62.2	64.2
			С	67.1	64.5	62.9	61.4	66.2	66.3	64.0	67.2	65.0	
			A	91.3	95.2	95.2	97.7	90.9	89.7	93.4	92.7	93.3	
	5/1/2007	364	В	91.8	90.4	93.2	90.7	95.1	88.6	94.3	95.0	92.4	92.3
			С	89.7	87.7	92.8	96.0	91.4	86.8	89.9	95.5	91.2	

 Mix
 TB4A5

 Cast Date
 5/4/2006

Identifier	Date	Days	Sample	0°	90°	180°	270°	0°	90°	180°	270°	Average	Gen. Aver.
			A	3.5	3.6	3.6	3.7	3.5	3.5	3.6	3.7	3.6	
	5/5/2006	1	В	3.6	3.3	3.2	3.4	3.3	3.3	3.4	3.3	3.4	3.5
			С	3.5	3.8	3.4	3.4	3.4	3.6	3.4	3.5	3.5	
			A	4.4	4.4	4.3	4.6	4.3	4.2	4.4	4.5	4.4	
	5/7/2006	3	В	4.4	4.3	4.0	4.2	4.6	4.3	4.1	4.2	4.3	4.3
			С	4.1	4.3	4.2	4.3	4.2	4.4	4.1	4.7	4.3	
			A	9.8	10.1	9.8	10.2	9.7	10.6	10.2	10.2	10.1	
	5/11/2006	7	В	10.5	9.2	8.8	9.3	10.4	9.4	8.9	9.3	9.5	9.8
			С	9.5	9.9	9.4	10.0	9.1	10.0	9.7	10.0	9.7	
			A	17.5	16.0	17.3	17.5	17.7	17.4	17.7	17.4	17.3	
	5/18/2006	14	В	15.3	16.0	16.4	15.1	15.5	16.2	16.5	15.6	15.8	16.6
			С	17.1	16.6	16.1	16.6	17.5	16.4	18.0	16.1	16.8	
			A	22.1	22.1	20.9	22.5	22.5	23.1	21.8	22.4	22.2	
TB4A5	6/1/2006	28	В	21.9	19.8	19.2	19.4	22.9	20.7	19.0	19.9	20.4	21.3
			С	20.7	21.7	20.7	21.9	20.5	23.3	20.3	22.1	21.4	
			A	31.0	31.6	30.5	31.6	31.4	31.2	31.1	32.1	31.3	
	6/29/2006	56	В	30.8	29.4	29.0	27.2	30.3	29.0	28.8	27.2	29.0	30.7
			С	31.5	33.6	30.1	30.5	32.3	34.1	30.2	32.2	31.8	
			A	36.1	36.4	34.3	37.5	36.1	36.1	34.4	34.6	35.7	
	8/3/2006	91	В	33.1	31.5	31.9	31.4	34.0	32.4	31.9	30.5	32.1	34.2
			С	32.6	37.3	33.5	35.5	32.9	37.6	33.9	35.7	34.9	
			A	61.8	61.4	61.9	58.5	61.3	61.8	62.1	59.3	61.0	
	11/7/2006	187	В	53.5	59.4	63.7	53.5	53.5	60.4	64.8	54.6	57.9	60.4
			С	60.5	65.7	60.2	66.7	60.3	62.2	57.1	64.7	62.2	
			A	77.8	78.2	76.9	75.4	73.2	81.8	78.2	74.6	77.0	
	5/3/2007	364	В	73.0	79.5	80.8	77.8	74.9	77.9	78.0	81.0	77.9	78.2
			С	75.8	78.7	82.1	80.1	79.5	78.9	78.3	84.4	79.7	7

Mix	TB5A5
Cast Date	5/4/2006

Identifier	Date	Days	Sample	0°	90°	180°	270°	0°	90°	180°	270°	Average	Gen. Aver
			A	3.4	3.4	3.4	3.4	3.3	3.3	3.3	3.3	3.4	
	5/5/2006	1	В	3.3	3.1	3.2	3.3	3.1	3.3	3.2	3.3	3.2	3.3
			С	3.3	3.2	3.3	3.1	3.4	3.3	3.2	3.3	3.3	1
			A	4.1	4.0	4.1	4.1	4.2	4.0	4.0	4.0	4.1	
	5/7/2006	3	В	3.8	4.0	3.9	3.9	3.9	4.0	3.9	3.9	3.9	4.0
			С	4.0	3.9	4.0	4.2	4.0	4.0	4.0	4.1	4.0	
			A	7.5	7.5	7.3	7.6	7.6	7.3	7.6	7.7	7.5	
	5/11/2006	7	В	7.6	7.9	7.5	7.4	7.8	7.9	7.5	7.7	7.7	7.3
			С	7.3	7.4	7.5	7.5	7.5	6.1	5.7	5.5	6.8	
	= / / 0 / 0 0 0 0		A	14.0	14.0	14.1	15.2	13.9	14.4	14.0	15.1	14.3	13.7
	5/18/2006	14	В	15.0	14.0	13.5	13.9	14.9	13.8	13.8	13.5	14.1	
			С	12.7	12.4	12.5	13.3	12.5	12.4	12.5	13.1	12.7	
	6/1/2006		A	21.7	20.6	20.2	20.0	22.0	20.6	19.2	19.7	20.5	
TB5A5		28	В	21.0	19.9	20.2	21.7	20.3	19.5	20.4	22.0	20.6	20.4
			С	19.7	20.6	20.4	19.8	20.1	20.9	20.2	19.1	20.1	
		56	A	36.8	35.2	36.6	34.7	36.7	36.6	37.4	35.0	36.1	35.1
	6/29/2006		В	33.3	33.5	33.5	38.1	34.3	32.1	34.9	35.9	34.5	
			С	33.6	36.7	34.4	34.4	34.0	36.6	34.5	34.3	34.8	
			A	45.0	43.4	43.9	41.6	45.0	43.2	43.4	42.2	43.5	
	8/3/2006	91	В	43.0	39.8	42.6	46.1	41.9	41.5	43.1	46.6	43.1	42.9
			С	41.0	43.3	42.2	40.8	41.4	44.0	42.4	42.0	42.1	
			A	79.4	82.5	90.4	87.2	84.5	82.4	90.4	87.5	85.5	
	11/7/2006	187	В	88.7	83.0	75.6	90.8	85.2	83.7	79.8	85.5	84.0	83.7
			С	81.6	81.5	80.3	83.5	78.7	82.2	79.3	84.1	81.4	
			A	104.2	111.0	117.5	117.3	111.7	112.2	115.3	114.4	113.0	111.2
	5/3/2007	364	В	111.9	106.1	113.1	107.0	114.2	109.2	112.8	110.7	110.6	
			С	111.3	108.6	111.9	111.1	106.8	110.3	109.5	110.6	110.0	

 Mix
 TB6A5

 Cast Date
 5/9/2006

Identifier	Date	Days	Sample	0°	90°	180°	270°	0°	90°	180°	270°	Average	Gen. Aver.
			A	2.6	2.5	2.5	2.6	2.6	2.5	2.5	2.5	2.5	
	5/10/2006	1	В	2.5	2.5	2.6	2.5	2.5	2.5	2.6	2.5	2.5	2.5
			С	2.7	2.6	2.7	2.7	2.5	2.5	2.5	2.2	2.6	1
			A	4.1	3.8	3.9	3.8	4.1	3.9	4.0	3.9	3.9	
	5/12/2006	3	В	4.0	3.9	3.9	3.8	4.0	4.1	4.0	3.8	3.9	4.0
			С	3.9	4.1	4.0	4.0	3.9	4.0	4.0	4.1	4.0	
			A	9.1	8.8	9.1	9.1	9.2	8.8	8.9	9.0	9.0	
	5/16/2006	7	В	8.8	9.2	8.5	8.3	8.9	8.9	8.6	8.4	8.7	8.9
			С	8.6	8.9	9.3	9.1	8.7	9.7	9.2	9.0	9.1	1
		14	A	17.3	15.9	16.6	15.8	16.2	15.5	16.8	15.7	16.2	16.1
	5/23/2006		В	16.2	15.9	15.7	16.8	16.2	15.7	15.9	16.6	16.1	
			С	18.3	13.4	12.8	18.6	18.3	13.5	13.4	18.6	15.9	
	6/6/2006	6 28	A	25.0	31.1	24.2	22.9	24.2	22.8	23.6	23.3	24.6	26.9
TB6A5			В	24.5	23.0	23.4	24.9	23.4	23.6	23.9	24.8	23.9	
			С	31.1	33.3	35.2	33.4	29.3	30.6	32.9	30.0	32.0	
		/2006 57	A	37.4	33.5	35.7	34.0	37.6	33.6	36.0	35.0	35.4	36.5
	7/5/2006		В	35.9	33.7	37.4	38.3	36.4	33.8	36.2	37.7	36.2	
			С	36.4	38.4	38.8	39.2	36.9	37.6	39.5	37.9	38.1	
			A	97.4	95.3	115.8	111.2	94.0	101.5	97.2	103.2	102.0	
	8/8/2006	91	В	99.1	103.4	104.5	112.0	100.2	109.4	120.2	103.4	106.5	104.2
			С	103.7	111.2	105.2	98.1	97.1	113.2	107.3	97.6	104.2	
			A	77.8	70.2	75.2	68.9	73.7	71.2	75.5	71.8	73.0	
	11/7/2006	182	В	74.7	70.4	75.6	78.7	74.9	73.7	79.1	76.3	75.4	74.7
			С	73.2	77.5	73.7	75.7	71.8	78.2	77.2	78.3	75.7	
			A	108.5	113.1	110.5	106.5	105.8	105.2	112.2	100.2	107.8	108.5
	5/8/2007	364	В	101.2	112.8	101.4	104.7	110.5	118.4	110.3	108.5	108.5	
	0,0,2001		С	106.8	108.5	111.0	114.7	107.9	101.7	112.2	110.3	109.1	

Mix	TB7A5
Cast Date	5/9/2006

Identifier	Date	Days	Sample	0°	90°	180°	270°	0°	90°	180°	270°	Average	Gen. Aver
			A	2.6	2.1	2.6	2.6	1.7	1.7	1.9	1.8	2.1	
	5/10/2006	1	В	2.0	2.1	2.2	2.0	2.1	2.0	2.0	2.1	2.1	1.7
			С	0.3	0.2	1.2	1.0	1.1	1.2	0.8	0.6	0.8	1
			A	3.4	3.5	3.4	3.5	3.4	3.5	3.4	3.5	3.5	
	5/12/2006	3	В	3.5	3.4	3.6	3.5	3.5	3.4	3.6	3.6	3.5	3.5
			С	3.5	3.5	3.4	3.6	3.5	3.5	3.4	3.5	3.5	
			A	6.0	6.5	6.5	6.1	6.2	6.3	6.6	6.1	6.3	
	5/16/2006	7	В	6.3	6.1	6.5	6.1	6.4	5.9	6.6	6.2	6.3	6.3
			С	6.4	6.5	6.2	6.5	6.3	6.5	6.3	6.6	6.4	
		14	A	12.7	12.9	13.4	13.4	12.7	12.7	13.1	13.3	13.0	13.1
	5/23/2006		В	12.9	12.2	13.5	12.4	12.9	12.6	13.3	12.3	12.8	
			С	13.3	13.4	12.8	13.6	13.3	13.5	13.4	13.6	13.4	
	6/6/2006	28	A	25.0	31.8	31.0	27.2	27.0	31.9	31.0	29.3	29.3	31.3
TB7A5			В	30.3	31.2	33.0	34.0	28.9	34.3	35.7	28.2	32.0	
			С	31.4	32.2	31.6	34.3	34.0	28.8	32.4	35.6	32.5	
			A	35.5	36.3	38.5	37.9	36.4	36.5	37.1	39.8	37.3	38.1
	7/5/2006	57	В	36.8	36.3	37.9	36.6	38.7	41.0	42.2	38.9	38.6	
			С	38.6	38.9	37.5	39.0	37.9	38.6	38.1	39.0	38.5	
			A	101.2	108.6	107.4	98.9	95.4	99.4	102.8	98.3	101.5	
	8/8/2006	91	В	94.3	103.4	102.6	104.2	100.3	115.3	104.3	115.5	105.0	105.9
			С	112.6	101.5	120.1	109.7	111.3	105.3	113.9	115.2	111.2	
			A	92.0	84.3	86.1	90.2	86.4	87.1	87.7	90.2	88.0	
	11/7/2006	182	В	92.5	86.0	88.9	83.6	88.5	81.7	88.6	83.2	86.6	87.9
			С	85.0	89.7	88.8	93.7	89.7	91.2	85.5	89.2	89.1	
			A	128.5	120.5	122.2	114.3	134.5	119.6	117.4	118.8	122.0	
	5/8/2007	364	В	127.9	120.6	122.5	121.5	124.3	133.5	129.7	113.5	124.2	124.6
			С	126.5	144.6	123.6	127.1	125.0	124.2	126.5	124.5	127.8	

 Mix
 TB8A5

 Cast Date
 5/11/2006

Identifier	Date	Days	Sample	0°	90°	180°	270°	0°	90°	180°	270°	Average	Gen. Aver
		-	A	2.7	2.5	2.5	2.6	2.5	2.5	2.5	2.6	2.6	
	5/12/2006	1	В	2.8	2.8	2.7	2.6	2.8	2.8	2.7	2.6	2.7	2.7
			С	2.7	2.6	2.7	2.7	2.7	2.7	2.8	2.6	2.7	
			A	3.9	3.8	3.6	3.8	4.0	3.9	3.6	3.8	3.8	
	5/14/2006	3	В	4.0	3.9	3.7	3.4	3.6	3.8	3.4	3.6	3.7	4.0
			С	3.5	3.2	3.4	3.1	5.7	5.9	6.0	6.3	4.6	
			A	13.6	13.2	13.2	12.7	13.1	12.8	13.3	12.6	13.1	
	5/18/2006	7	В	12.9	13.6	12.3	12.7	13.3	12.7	12.5	12.7	12.8	12.9
			С	12.4	12.9	13.2	12.5	12.6	13.1	12.9	12.4	12.8	
	5/25/2006	14	A	22.8	22.0	21.2	20.7	21.8	22.0	21.3	20.7	21.6	22.1
			В	23.1	21.1	22.7	23.1	22.8	21.9	22.3	22.5	22.4	
TB8A5			С	22.0	22.0	21.7	22.5	22.7	21.4	22.1	22.9	22.2	
IDOAD			A	32.5	31.7	30.6	30.8	32.8	31.8	30.5	31.6	31.5	
	6/8/2006	28	В	32.3	30.7	33.1	34.1	34.1	30.2	32.7	34.2	32.7	32.1
			С	32.0	31.0	32.5	32.6	32.5	30.7	32.0	32.6	32.0	
			A	39.9	41.6	42.8	40.3	39.4	42.3	42.7	40.3	41.2	
	7/6/2006	56	В	40.0	43.7	45.0	42.6	40.4	44.6	43.0	43.0	42.8	42.2
			С	41.8	42.5	44.2	41.5	41.6	42.8	43.7	42.2	42.5	
			A	98.0	95.4	92.7	90.5	97.2	94.8	92.1	91.1	94.0	
	11/22/2006	195	В	97.7	90.4	95.5	98.3	98.5	90.9	90.0	98.3	95.0	94.4
			С	94.0	94.8	93.5	95.6	95.2	94.0	93.3	92.7	94.1	1
			A	107.5	113.0	98.3	100.9	108.1	103.2	98.3	100.1	103.7	106.0
	5/10/2007	364	В	110.6	104.7	97.1	115.9	108.9	104.5	98.4	112.7	106.6	
		<i>⊪</i> ∠007 304	С	105.6	116.9	105.5	100.4	109.6	114.0	109.1	100.4	107.7	

Mix	TB1H4
Cast Date	5/11/2006

Identifier	Date	Days	Sample	0°	90°	180°	270°	0°	90°	180°	270°	Average	Gen. Aver.
			A	3.2	3.2	3.2	3.0	3.3	3.2	3.2	3.1	3.2	
	5/12/2006	1	В	3.0	3.0	3.0	3.1	2.9	3.1	2.9	3.1	3.0	3.1
			С	3.2	3.2	3.2	3.1	3.1	3.1	3.1	3.1	3.1	
			A	3.6	3.8	3.7	3.4	3.5	3.7	3.6	3.4	3.6	
	5/14/2006	3	В	3.5	3.3	3.7	3.7	3.5	3.4	3.3	3.6	3.5	3.5
			С	3.6	3.5	3.5	3.6	3.5	3.6	3.6	3.5	3.6	
			A	4.8	5.0	5.1	5.2	4.8	5.2	5.2	5.3	5.1	
	5/18/2006	7	В	5.0	4.9	5.1	5.0	4.9	4.8	5.2	5.1	5.0	4.9
			С	4.6	4.6	4.7	4.8	4.7	4.8	4.6	4.7	4.7	1
	5/25/2006	14	A	6.6	6.0	6.5	6.6	6.5	6.0	6.5	6.5	6.4	6.3
			В	6.1	6.4	6.1	6.2	6.4	6.4	6.4	6.1	6.3	
TB1H4			С	6.0	6.3	6.1	6.0	6.1	6.1	6.3	5.9	6.1	
IDIN4		28	A	10.4	9.2	10.6	9.8	10.6	9.3	10.5	9.4	10.0	
	6/8/2006		В	10.3	10.1	9.4	9.6	10.2	10.2	9.7	9.9	9.9	10.1
			С	9.5	9.9	9.7	9.3	9.7	12.0	9.6	12.5	10.3	
			A	18.5	17.1	18.6	18.1	18.5	17.2	19.3	17.6	18.1	
	7/6/2006	56	В	17.3	18.5	18.1	17.7	16.8	19.2	17.9	17.8	17.9	17.8
			С	17.6	17.6	17.1	17.2	17.4	17.7	17.2	16.7	17.3	
			A	64.8	57.5	61.7	63.5	63.8	57.6	62.5	65.6	62.1	
	11/22/2006	195	В	63.6	63.7	64.0	59.3	65.6	63.9	63.8	59.7	63.0	62.1
			С	63.0	60.3	61.3	61.0	62.2	60.3	61.0	60.1	61.2	
			A	75.2	77.5	70.6	76.5	73.7	78.7	69.6	73.2	74.4	
	5/10/2007	364	В	69.4	69.8	72.9	78.2	69.3	76.1	69.8	75.8	72.7	73.7
	2 0/2001		С	71.6	74.2	74.0	78.4	71.2	72.5	74.6	75.5	74.0	7

Mix TB2H4 Cast Date 5/16/2006

Identifier	Date	Days	Sample	0°	90°	180°	270°	0°	90°	180°	270°	Average	Gen. Aver
			A	3.2	3.1	3.0	3.2	3.0	3.1	3.0	3.2	3.1	1
	5/17/2006	1	В	3.1	3.1	3.1	3.2	3.0	3.0	3.1	3.2	3.1	3.1
			С	3.1	3.1	3.2	3.0	3.0	3.0	3.1	2.9	3.1	
			A	3.8	3.8	3.6	3.8	3.7	3.9	3.8	3.9	3.8	
	5/19/2006	3	В	3.9	3.9	4.0	3.9	3.9	3.8	3.9	4.0	3.9	3.9
			С	3.8	3.9	4.0	4.1	3.8	3.8	4.1	4.1	4.0	
		7	A	8.2	8.1	7.4	7.5	8.2	8.1	7.4	7.8	7.8	
	5/23/2006		В	7.9	8.0	8.0	7.9	8.1	8.4	8.1	8.0	8.1	7.9
			С	7.6	7.5	8.0	7.4	7.6	7.6	8.0	7.6	7.7	
	5/30/2006	14	A	22.3	21.9	20.3	19.6	22.2	20.5	20.5	19.3	20.8	21.2
			В	21.3	21.2	21.3	20.5	21.7	22.1	21.6	20.5	21.3	
TB2H4			С	20.3	21.4	23.0	20.8	21.7	20.9	22.6	20.7	21.4	
1 DZI 14		29	A	43.2	43.2	43.3	43.5	42.6	43.0	45.1	41.3	43.2	
	6/14/2006		В	43.5	44.0	47.2	45.5	43.6	44.4	45.5	44.9	44.8	43.2
			С	40.2	41.8	42.1	41.0	41.1	41.3	44.8	41.2	41.7	
			A	70.5	68.9	66.2	67.8	72.0	69.9	67.2	68.4	68.9	
	7/11/2006	56	В	73.1	76.2	71.3	68.9	71.9	73.1	71.6	69.0	71.9	70.1
			С	67.0	69.2	74.1	70.2	70.6	68.1	71.3	66.1	69.6	
			A	143.2	138.9	140.6	139.5	136.6	142.6	149.4	134.2	140.6	
	11/14/2006	182	В	154.6	142.5	147.1	142.0	148.4	145.9	146.7	139.4	145.8	142.2
			С	149.4	141.0	135.9	129.5	145.6	137.6	147.1	134.2	140.0	
			A	157.2	165.3	173.8	160.5	162.4	151.9	176.7	164.4	164.0	166.1
	5/15/2007	364	В	169.3	166.9	172.0	151.7	170.9	164.9	181.3	169.5	168.3	
			С	156.8	180.2	164.2	167.0	157.1	170.3	171.7	161.5	166.1	1

Mix	TB3H4
Cast Date	5/16/2006

Identifier	Date	Days	Sample	0°	90°	180°	270°	0°	90°	180°	270°	Average	Gen. Aver.
			А	3.0	2.8	3.0	2.9	3.0	3.0	2.8	3.0	2.9	
	5/17/2006	1	В	3.0	3.0	2.8	3.2	3.0	3.1	3.0	3.1	3.0	3.0
			С	3.2	3.0	3.1	3.1	3.0	3.0	3.1	3.1	3.1	
			A	3.5	3.7	3.7	3.8	3.4	3.7	3.7	3.7	3.7	
	5/19/2006	3	В	3.7	3.8	3.7	3.9	3.8	3.8	3.8	3.9	3.8	3.8
			С	3.7	3.8	3.9	4.0	3.7	3.9	3.8	3.9	3.8	
		7	A	7.1	6.5	7.0	7.5	7.0	6.7	7.0	7.3	7.0	
	5/23/2006		В	6.6	6.9	6.8	6.6	6.6	6.9	6.5	6.9	6.7	6.9
			С	7.0	6.9	6.8	7.1	7.1	7.1	7.0	6.9	7.0	
		14	A	12.5	11.8	12.3	12.0	12.8	11.7	12.3	11.4	12.1	12.1
	5/30/2006		В	11.8	12.3	10.9	12.1	11.7	12.5	11.1	12.2	11.8	
TB3H4			С	12.4	12.2	12.0	12.2	12.6	12.0	12.0	12.5	12.2	
10304		29	A	19.4	19.5	16.5	18.2	18.2	18.4	18.5	19.1	18.5	18.9
	6/14/2006		В	17.3	19.3	18.5	19.5	19.4	17.2	18.3	19.3	18.6	
			С	18.9	19.0	19.9	20.4	19.4	18.7	19.7	19.8	19.5	
			A	31.7	29.0	30.8	30.4	31.1	29.5	30.5	32.9	30.7	
	7/11/2006	56	В	28.7	30.8	29.0	28.7	28.6	30.3	29.5	28.2	29.2	30.1
			С	30.4	30.6	30.9	30.6	30.7	28.2	30.2	29.9	30.2	
			A	83.9	85.9	73.8	92.7	81.4	85.3	74.6	90.2	83.5	
	11/14/2006	182	В	87.1	84.7	85.1	82.8	87.7	84.4	83.9	81.3	84.6	84.5
			С	86.9	87.9	83.2	86.3	86.9	82.8	84.5	85.1	85.5	
			A	105.8	102.0	102.8	103.2	103.6	115.7	105.3	103.2	105.2	
	5/15/2007	364	В	111.6	114.4	103.4	105.5	106.6	107.0	100.4	102.7	106.5	105.4
	2.10/2001		С	102.6	115.3	100.4	94.0	99.8	109.4	101.5	113.2	104.5	1

Mix	TB4H4
Cast Date	5/18/2006

Identifier	Date	Days	Sample	0°	90°	180°	270°	0°	90°	180°	270°	Average	Gen. Aver.
			A	2.7	2.9	2.8	2.8	2.8	2.9	2.8	2.7	2.8	
	5/19/2006	1	В	2.6	2.5	2.2	2.4	2.4	2.4	2.7	2.7	2.5	2.7
			С	2.8	2.7	2.8	2.7	2.7	2.7	2.8	2.8	2.8	1
			A	3.5	3.8	3.8	3.6	3.5	3.6	3.8	3.8	3.7	
	5/21/2006	3	В	3.5	3.6	3.8	3.6	3.4	3.6	3.5	3.7	3.6	3.6
			С	3.6	3.6	3.6	3.7	3.5	3.6	3.7	3.6	3.6	
			A	7.8	7.8	8.3	7.7	7.7	7.8	8.4	7.7	7.9	
	5/25/2006	7	В	8.0	8.1	7.9	7.6	7.9	7.9	7.7	7.7	7.9	7.9
			С	8.1	8.1	8.2	7.8	8.1	8.2	8.2	7.8	8.1	
			A	14.8	14.4	15.3	13.4	14.5	14.8	15.8	14.2	14.7	
	6/1/2006	14	В	15.2	15.1	14.3	14.4	15.2	14.6	14.2	13.9	14.6	14.9
TB4H4			С	15.0	15.4	16.2	14.6	15.0	15.8	16.4	14.8	15.4	
10404			A	23.0	22.9	23.6	17.2	24.0	22.5	25.0	21.8	22.5	
	6/15/2006	28	В	27.7	28.0	25.0	24.4	24.9	26.2	26.8	25.2	26.0	25.4
			С	25.0	27.0	27.5	26.3	26.5	31.5	30.1	27.2	27.6	1
			A	30.6	31.4	33.5	31.4	32.1	30.7	32.2	30.8	31.6	
	7/13/2006	56	В	31.0	31.3	31.7	30.1	30.3	31.8	31.7	30.7	31.1	31.4
			С	31.1	34.1	30.3	31.5	31.3	33.4	30.8	30.1	31.6	1
			A	70.6	71.8	77.1	69.1	70.4	69.9	79.5	68.2	72.1	
	11/16/2006	182	В	71.2	66.7	70.5	68.8	76.7	66.6	70.8	67.3	69.8	72.6
			С	76.2	77.7	81.4	71.0	74.1	77.6	77.2	73.1	76.0	1
			А	89.2	82.9	93.7	87.0	90.7	79.4	89.5	91.6	88.0	
	5/17/2007	364	В	89.0	97.6	90.7	87.4	87.7	83.9	90.7	90.1	89.6	88.1
			С	89.3	91.8	91.1	79.9	82.8	83.8	85.8	89.6	86.8	1

Mix	TB5H4
Cast Date	5/18/2006

Identifier	Date	Days	Sample	0°	90°	180°	270°	0°	90°	180°	270°	Average	Gen. Aver.
			A	2.6	2.6	2.8	2.6	3.5	3.3	3.2	3.2	3.0	1
	5/19/2006	1	В	3.4	3.3	3.1	2.9	2.7	2.7	2.6	2.6	2.9	2.8
			С	2.6	2.6	2.6	2.6	2.5	2.5	2.5	2.6	2.6	1
			A	3.0	3.0	3.0	3.3	3.0	3.0	3.0	3.2	3.1	
	5/21/2006	3	В	3.1	3.2	3.3	3.0	3.1	3.1	3.3	3.1	3.2	3.1
			С	3.0	3.2	3.1	3.1	3.1	3.1	3.1	3.2	3.1	1
			A	5.5	5.7	5.7	5.6	5.9	5.9	6.0	5.9	5.8	
	5/25/2006	7	В	5.9	5.9	6.0	5.9	6.1	5.4	5.8	6.0	5.9	5.7
			С	5.5	5.6	5.7	5.5	5.6	5.6	5.6	5.5	5.6	1
			A	11.2	11.7	11.6	11.9	11.4	11.9	11.8	12.6	11.8	
	6/1/2006	14	В	12.2	10.9	11.9	12.9	12.2	10.8	12.1	13.1	12.0	11.7
TB5H4			С	11.4	11.6	11.4	11.2	11.5	11.6	11.4	11.2	11.4	1
10004			A	21.0	21.5	21.9	22.0	21.3	21.6	22.2	22.0	21.7	
	6/15/2006	28	В	22.5	19.9	23.5	24.1	22.5	20.0	22.6	24.1	22.4	21.9
			С	21.6	22.3	21.5	21.3	21.6	22.3	20.4	21.5	21.6	1
			A	33.6	35.4	36.1	35.6	33.8	35.1	35.7	36.0	35.2	
	7/13/2006	56	В	32.9	38.3	39.3	37.6	33.3	39.8	39.2	37.4	37.2	35.4
			С	34.6	34.1	35.6	32.8	32.9	33.6	34.9	32.2	33.8	1
			A	103.6	95.1	91.0	93.7	94.2	97.2	94.9	96.7	95.8	
	11/16/2006	182	В	98.2	91.3	111.6	112.9	99.3	95.2	107.4	108.9	103.1	99.1
			С	101.4	101.3	92.6	96.1	103.8	95.6	98.4	97.5	98.3	7
			A	117.5	127.2	137.4	128.2	113.0	110.6	120.4	111.0	120.7	
	5/17/2007	364	В	127.2	123.3	116.3	123.6	118.8	105.9	114.1	133.7	120.4	119.6
			С	106.4	114.2	126.7	119.3	124.4	117.4	115.9	118.1	117.8	1

Mix TB6H4 Cast Date 5/23/2006

Identifier	Date	Days	Sample	0°	90°	180°	270°	0°	90°	180°	270°	Average	Gen. Aver.
			A	2.2	2.3	2.3	2.2	2.3	2.3	2.2	2.2	2.3	
	5/24/2006	1	В	2.2	2.3	2.3	2.3	2.3	2.3	2.3	2.2	2.3	2.3
			С	2.4	2.3	2.3	2.2	2.3	2.3	2.3	2.2	2.3	
			A	3.5	3.5	3.6	3.6	3.5	3.6	3.5	3.6	3.6	
	5/26/2006	3	В	3.5	3.5	3.6	3.7	3.4	3.5	3.6	3.4	3.5	3.5
			С	3.3	3.5	3.6	3.7	3.4	3.5	3.6	3.6	3.5	
			A	8.2	7.9	8.4	8.9	8.2	7.9	8.3	8.4	8.3	
	5/30/2006	7	В	8.4	8.5	8.8	8.3	8.4	8.6	9.0	8.3	8.5	8.5
			С	8.9	8.2	9.0	9.0	8.9	8.1	8.6	8.9	8.7	
			A	20.3	20.5	21.1	18.7	16.3	18.4	18.0	18.0	18.9	
	6/6/2006	14	В	19.2	18.4	19.4	19.4	20.4	22.0	22.2	23.5	20.6	20.7
TB6H4			С	23.5	21.1	22.2	21.7	23.7	20.7	24.7	22.5	22.5	
100114			A	25.1	25.8	24.8	25.3	24.7	23.7	24.5	26.0	25.0	
	6/20/2006	28	В	24.8	25.4	26.8	25.0	25.8	25.7	27.7	25.7	25.9	25.5
			С	27.4	24.4	23.0	23.8	26.8	25.7	27.2	27.2	25.7	
			A	35.2	38.2	37.8	38.3	35.2	37.6	37.6	39.6	37.4	
	7/18/2006	56	В	37.3	36.0	36.3	35.6	37.5	36.5	35.9	36.9	36.5	36.9
			С	33.7	37.7	37.0	37.9	35.2	38.2	37.4	37.7	36.9	
			A	83.6	85.4	84.5	86.3	85.9	82.8	86.7	88.9	85.5	
	1/25/2007	247	В	85.6	86.3	91.3	85.7	84.3	87.0	89.7	84.9	86.9	84.8
			С	87.6	81.7	79.2	79.5	86.6	80.3	81.9	79.7	82.1	
			A	110.1	108.7	122.1	111.9	111.3	119.6	115.9	111.6	113.9	
	5/22/2007	364	В	130.4	123.4	130.5	113.7	125.3	132.8	118.6	106.3	122.6	119.1
			С	117.1	118.9	125.7	125.0	126.3	115.0	124.4	112.8	120.7	

Mix	TB7H4
Cast Date	5/23/2006

Identifier	Date	Days	Sample	0°	90°	180°	270°	0°	90°	180°	270°	Average	Gen. Aver.
			A	2.2	2.2	2.1	2.1	2.1	2.1	2.1	2.1	2.1	1
	5/24/2006	1	В	2.2	2.2	2.2	2.2	2.2	2.1	2.2	2.2	2.2	2.2
			С	2.2	2.2	2.3	2.2	2.2	2.2	2.3	2.2	2.2	1
			A	2.9	2.9	2.9	2.9	2.8	2.9	2.9	3.0	2.9	
	5/26/2006	3	В	2.9	3.0	3.0	3.1	2.9	3.0	3.0	3.1	3.0	3.0
			С	3.0	3.0	3.0	3.2	3.0	3.0	3.1	3.1	3.1	1
			A	5.7	5.9	5.9	5.7	5.8	5.9	5.7	5.7	5.8	
	5/30/2006	7	В	5.8	6.0	5.8	5.7	5.9	5.9	5.9	5.8	5.9	5.9
			С	6.1	5.8	6.1	5.8	6.1	5.8	6.1	5.7	5.9	1
			A	15.6	19.4	16.6	15.1	15.4	16.8	14.5	17.5	16.4	
	6/6/2006	14	В	15.0	15.0	14.6	14.2	13.9	13.8	13.7	13.5	14.2	15.4
TB7H4			С	13.5	15.8	15.4	15.8	13.8	14.6	16.8	18.7	15.6	1
10/114			A	21.1	21.4	21.5	20.6	20.8	21.6	21.4	21.1	21.2	
	6/20/2006	28	В	21.4	21.5	22.2	21.2	21.0	23.3	22.3	21.2	21.8	21.4
			С	21.8	20.5	20.9	20.5	21.5	22.6	20.7	21.2	21.2	1
			A	33.3	33.2	33.0	34.7	33.4	33.5	33.7	34.7	33.7	
	7/18/2006	56	В	34.2	34.4	35.6	37.2	33.6	35.1	36.4	38.0	35.6	34.7
			С	35.6	36.6	33.2	34.3	36.2	35.6	33.3	35.0	35.0	
			A	87.5	89.6	93.1	87.8	90.2	92.2	91.8	87.4	90.0	
	1/25/2007	247	В	94.9	95.0	96.3	108.1	94.8	93.3	102.7	102.4	98.4	93.6
			С	87.6	86.9	95.3	95.1	88.7	92.0	96.8	96.6	92.4	
			A	147.2	138.3	151.1	149.2	150.3	155.8	157.0	161.3	151.3	
	5/22/2007	364	В	162.6	150.4	153.4	162.2	153.6	151.7	157.3	159.4	156.3	151.6
			С	148.1	153.0	156.1	139.9	143.7	146.5	139.2	151.6	147.3	1

Mix TB8H4 Cast Date 5/25/2006

Identifier	Date	Days	Sample	0°	90°	180°	270°	0°	90°	180°	270°	Average	Gen. Aver.
			A	2.3	2.4	2.4	2.5	2.3	2.4	2.5	2.4	2.4	
	5/26/2006	1	В	2.4	2.4	2.5	2.4	2.4	2.4	2.5	2.4	2.4	2.4
			С	2.4	2.4	2.2	2.3	2.4	2.4	2.2	2.3	2.3	
			A	4.0	4.0	4.0	4.3	3.8	3.9	4.0	4.2	4.0	
	5/28/2006	3	В	3.8	3.9	4.1	4.9	3.8	3.9	4.0	4.1	4.1	4.0
			С	3.8	3.8	3.9	3.9	3.9	3.9	3.9	4.0	3.9	
			A	12.9	13.9	13.8	14.6	13.9	14.3	13.9	14.6	14.0	
	6/1/2006	7	В	13.7	13.4	13.8	13.6	13.4	13.3	14.3	13.7	13.7	13.7
			С	13.1	13.8	13.6	13.8	13.4	13.7	13.5	13.9	13.6	
			A	19.1	20.9	21.2	23.2	21.6	23.7	24.3	25.8	22.5	
	6/8/2006	14	В	23.4	24.0	24.7	26.7	24.7	23.7	24.5	24.0	24.5	23.7
TB8H4			С	23.1	24.1	23.4	25.0	23.5	24.9	24.4	25.4	24.2	
100114			A	38.6	36.9	35.3	37.7	37.2	37.3	37.1	36.0	37.0	
	6/22/2006	28	В	34.1	37.5	37.7	37.1	34.5	34.7	36.8	35.9	36.0	36.2
			С	35.3	37.4	33.9	35.5	35.0	36.2	35.7	35.9	35.6	
			A	45.3	46.1	47.2	46.7	46.1	46.5	51.0	47.1	47.0	
	7/20/2006	56	В	44.6	44.9	48.0	45.4	44.5	45.5	47.3	47.8	46.0	46.7
			С	45.6	48.3	46.7	47.6	46.9	46.9	47.3	47.5	47.1	
			A	85.8	83.6	87.7	86.5	88.1	84.1	90.1	85.0	86.4	
	1/25/2007	245	В	80.2	78.9	84.6	82.0	87.2	87.0	84.8	84.8	83.7	85.8
			С	90.7	86.9	87.4	87.9	90.5	87.3	81.2	86.5	87.3	
			A	121.2	118.7	104.6	115.2	130.7	121.2	117.1	111.4	117.5	
	5/24/2007	364	В	117.6	122.6	110.3	122.7	132.1	122.8	116.8	115.9	120.1	118.0
			С	118.5	119.4	111.9	116.1	120.8	119.6	123.5	101.6	116.4	

Mix	TB1H5
Cast Date	2/1/2007

Identifier	Date	Days	Sample	0°	90°	180°	270°	0°	90°	180°	270°	Average	Gen. Aver
			A	3.0	3.0	3.1	3.0	3.0	3.0	3.1	3.0	3.0	
	2/2/2007	1	В	3.1	3.1	3.1	3.2	2.9	3.0	3.1	3.2	3.1	3.1
			С	3.1	3.0	3.0	3.1	3.0	3.0	3.0	3.1	3.0	
			A	3.4	3.4	3.7	3.5	3.5	3.4	3.6	3.5	3.5	
	2/4/2007	3	В	3.6	3.6	3.6	3.6	3.6	3.5	3.5	3.6	3.6	3.5
			С	3.5	3.5	3.4	3.5	3.4	3.5	3.4	3.5	3.5	
			A	5.3	5.4	5.4	5.8	5.3	5.2	5.4	5.8	5.5	
	2/8/2007	7	В	5.5	5.7	5.9	6.0	5.6	5.7	5.9	6.1	5.8	5.7
			С	5.6	5.7	5.8	5.8	5.6	5.7	5.7	5.7	5.7	
			A	7.1	7.2	7.2	7.2	7.2	7.1	7.8	7.2	7.3	
	2/15/2007	14	В	7.2	7.3	7.6	7.6	7.0	7.3	7.5	7.6	7.4	7.4
			С	7.4	7.4	7.8	7.7	7.5	7.7	7.7	7.8	7.6	
			A	9.0	9.4	9.4	9.4	9.5	9.6	9.6	9.3	9.4	
TB1H5	3/1/2007	28	В	9.6	9.7	9.8	8.9	9.4	9.5	9.8	8.9	9.5	9.3
			С	9.1	9.2	9.2	9.3	9.0	9.1	9.1	9.2	9.2	
			A	15.0	14.2	14.3	14.4	14.4	14.5	15.0	14.4	14.5	
	3/29/2007	56	В	13.3	14.8	14.9	15.0	13.6	14.3	14.8	14.9	14.5	14.6
			С	14.4	15.5	14.7	14.7	14.4	14.6	14.7	15.0	14.8	
			A	22.3	22.3	23.8	21.8	22.8	22.4	24.4	21.9	22.7	
	5/3/2007	91	В	22.3	22.1	21.8	23.1	21.9	22.4	22.4	23.0	22.4	22.6
			С	22.9	23.1	22.4	22.7	23.1	22.5	22.2	23.0	22.7	
			A	41.8	42.1	43.2	40.7	40.1	39.8	42.0	43.4	41.6	
	8/2/2007	182	В	42.3	42.3	46.5	45.0	38.6	4.0	43.0	38.1	37.5	40.1
			С	40.6	39.8	41.2	43.7	40.1	41.3	41.8	41.4	41.2	
			A	44.4	44.3	44.1	44.1	44.3	44.1	44.1	44.1	44.2	
	1/31/2008	364	В	44.6	43.5	42.6	41.2	44.0	44.4	44.3	41.6	43.3	43.7
			С	43.6	44.2	42.6	44.5	43.7	43.3	43.2	43.3	43.6	

Mix Cast Date TB2H5 2/1/2007

Identifier	Date	Days	Sample	0°	90°	180°	270°	0°	90°	180°	270°	Average	Gen. Aver.
			Α	3.3	3.1	3.2	3.3	3.1	3.0	3.2	3.3	3.2	
	2/2/2007	1	В	3.0	3.1	3.0	3.1	3.0	3.1	3.0	3.1	3.1	3.2
			С	3.4	3.1	3.3	3.2	3.3	3.1	3.3	3.2	3.2	
			A	3.5	3.4	3.5	3.7	3.4	3.5	3.3	3.7	3.5	
	2/4/2007	3	В	3.4	3.5	3.4	3.4	3.4	3.4	3.4	3.6	3.4	3.5
			С	3.8	3.7	3.6	3.6	3.5	3.5	3.5	3.5	3.6	
			A	6.5	6.6	7.0	7.4	6.6	6.9	7.0	7.4	6.9	
	2/8/2007	7	В	6.7	6.7	6.8	7.1	6.8	6.8	6.9	7.2	6.9	6.9
			С	6.7	6.8	6.9	7.2	6.7	6.8	6.9	7.0	6.9	
			A	15.4	17.4	16.0	16.4	15.9	15.9	16.4	17.2	16.3	
	2/15/2007	14	В	15.4	15.8	15.8	16.2	15.0	15.5	15.9	16.0	15.7	16.2
			С	16.1	16.6	16.7	17.1	16.1	16.6	16.7	17.1	16.6	
			A	30.4	32.6	32.6	32.5	29.4	26.7	21.5	21.7	28.4	
TB2H5	3/1/2007	28	В	29.1	30.2	30.7	29.3	30.0	29.8	30.2	27.9	29.7	29.8
			С	32.2	31.8	30.5	30.8	31.9	31.4	30.6	30.6	31.2	
			A	54.2	61.0	59.0	59.7	54.3	58.9	59.7	59.1	58.2	
	3/29/2007	56	В	52.3	52.0	54.5	56.5	51.4	54.1	54.8	53.3	53.6	56.7
			С	59.0	59.5	57.8	56.0	59.6	60.2	57.2	56.3	58.2	
			A	79.5	85.9	86.0	83.6	78.8	86.2	88.1	83.3	83.9	
	5/3/2007	91	В	82.5	79.8	79.5	80.9	83.5	78.8	85.7	84.7	81.9	82.9
			С	82.3	82.7	81.3	85.1	82.2	83.8	79.8	85.8	82.9	
			A	39.7	42.1	43.2	40.7	40.1	39.8	40.5	41.6	41.0	
	8/2/2007	182	В	46.8	42.2	41.7	42.0	40.2	45.3	42.7	40.8	42.7	42.4
			С	43.4	43.0	48.0	39.0	40.5	43.6	43.4	47.6	43.6	
			A	92.9	93.0	92.9	85.7	93.0	94.7	94.4	87.5	91.8	
	1/31/2008	364	В	92.1	89.4	89.9	83.7	92.0	86.5	92.8	82.2	88.6	90.7
			С	97.4	89.8	88.1	89.1	97.5	91.8	89.3	91.2	91.8	1

Mix	TB3H5
Cast Date	2/6/2007

Identifier	Date	Days	Sample	0°	90°	180°	270°	0°	90°	180°	270°	Average	Gen. Aver.
			A	3.7	3.6	3.3	3.4	3.7	3.6	3.3	3.5	3.5	
	2/7/2007	1	В	3.4	3.7	3.4	3.3	3.5	3.7	3.5	3.3	3.5	3.4
			С	3.3	3.3	3.5	3.3	3.3	3.3	3.5	3.3	3.4	
			A	4.0	4.1	3.8	3.8	3.8	3.8	3.7	4.0	3.9	
	2/9/2007	3	В	3.9	3.8	3.6	3.8	3.8	3.9	3.6	3.8	3.8	3.8
			С	4.0	3.8	3.8	3.8	4.1	3.9	3.8	3.6	3.9	
			A	5.3	5.3	5.5	5.7	5.4	5.4	5.6	5.7	5.5	
	2/13/2007	7	В	5.3	5.3	5.4	5.4	5.4	5.5	5.7	5.6	5.5	5.4
			С	5.3	5.4	5.4	5.4	5.5	5.3	5.3	5.5	5.4	
			A	9.6	10.0	10.3	10.4	9.4	10.0	10.3	10.3	10.0	
	2/20/2007	14	В	9.4	9.5	9.7	10.3	9.4	9.5	9.6	10.4	9.7	9.9
			С	9.7	9.8	9.8	10.5	9.8	9.8	9.8	9.9	9.9	
			A	11.6	11.8	12.6	12.9	12.3	11.8	11.8	12.8	12.2	
TB3H5	3/6/2007	28	В	11.9	12.0	12.4	12.7	11.7	11.9	12.2	12.9	12.2	12.3
			С	12.4	12.5	12.5	12.7	12.2	12.2	12.3	12.8	12.5	
			A	25.2	25.6	24.7	22.3	25.2	24.4	23.2	21.8	24.1	
	4/3/2007	56	В	25.8	24.2	21.9	23.0	23.6	23.9	22.6	21.8	23.4	23.8
			С	23.6	24.6	23.4	25.0	23.5	24.3	24.1	23.3	24.0	
			A	36.2	33.9	32.1	31.4	34.5	33.3	33.8	29.8	33.1	
	5/8/2007	91	В	31.2	33.7	33.6	28.4	35.1	34.0	32.9	28.0	32.1	33.2
			С	34.2	36.9	34.3	33.1	34.6	38.0	32.1	31.5	34.3	
			A	30.3	31.2	29.5	28.8	29.9	31.2	29.8	29.6	30.0	
	8/7/2007	182	В	29.4	29.5	27.3	31.4	30.5	31.1	29.1	27.4	29.5	29.7
			С	29.6	30.5	29.1	29.7	29.2	30.2	30.3	29.3	29.7	
			A	60.1	64.8	54.6	56.2	57.6	60.2	58.6	62.1	59.3	
	2/5/2008	364	В	55.8	57.4	55.2	56.4	56.2	56.9	54.9	55.3	56.0	58.1
			С	61.0	57.7	57.8	61.5	58.6	55.9	58.2	60.9	59.0	

 Mix
 TB4H5

 Cast Date
 2/6/2007

Identifier	Date	Days	Sample	0°	90°	180°	270°	0°	90°	180°	270°	Average	Gen. Aver.
			A	3.5	3.3	3.3	3.5	3.5	3.3	3.4	3.5	3.4	
	2/7/2007	1	В	3.6	3.4	3.4	3.6	3.9	3.4	3.3	3.5	3.5	3.4
			С	3.3	3.4	3.5	3.4	3.3	3.4	3.5	3.5	3.4	1
			A	4.4	4.0	4.2	4.2	4.3	4.3	4.2	4.2	4.2	
	2/9/2007	3	В	4.2	4.2	4.1	4.0	4.2	4.2	4.2	4.0	4.1	4.2
			С	4.0	4.3	4.1	4.1	4.0	4.2	4.2	4.1	4.1	
			A	7.8	8.0	8.3	8.3	8.0	8.1	8.4	8.4	8.2	
	2/13/2007	7	В	7.7	7.8	8.0	8.5	7.6	7.8	7.9	8.0	7.9	8.0
			С	7.7	7.8	7.9	8.1	7.7	7.8	8.0	8.2	7.9	1
	2/20/2007 14	2007 14	A	15.1	16.1	15.7	15.8	15.2	15.2	16.1	16.4	15.7	15.6
			В	14.3	16.1	15.6	15.7	14.6	15.4	16.4	16.0	15.5	
			С	15.2	15.7	15.8	16.1	15.1	15.2	15.4	15.5	15.5	
	3/6/2007	28	A	18.7	19.6	19.9	19.9	20.2	20.4	18.7	19.6	19.6	19.6
TB4H5			В	19.1	18.8	18.9	20.4	19.1	19.4	19.7	20.4	19.5	
			С	19.0	19.5	20.3	20.5	19.0	19.2	19.6	20.1	19.7	
			A	35.8	34.5	36.7	37.0	32.3	35.6	35.8	35.2	35.4	34.5
	4/3/2007	56	В	33.4	33.9	32.6	34.8	33.0	36.7	32.0	35.7	34.0	
			С	34.2	34.2	35.6	34.8	33.3	34.7	31.7	34.1	34.1	
			A	49.8	50.4	42.5	41.5	44.8	43.2	39.7	42.9	44.4	
	5/8/2007	91	В	44.4	35.5	45.0	38.8	44.4	42.2	42.9	39.6	41.6	42.9
			С	47.5	40.1	44.8	43.5	43.0	38.4	41.9	42.8	42.8	
			A	31.3	28.4	42.4	31.2	24.0	28.6	30.4	42.2	32.3	
	8/7/2007	182	В	29.6	28.8	43.4	28.6	30.2	31.1	30.9	32.0	31.8	30.5
			С	28.2	28.2	20.3	26.6	30.2	28.3	30.1	26.2	27.3	1
			A	56.4	51.4	55.1	54.7	55.6	53.2	54.7	56.1	54.7	
	2/5/2008	364	В	56.3	53.3	54.5	52.2	55.8	52.8	57.2	49.1	53.9	54.4
			С	53.2	55.3	56.8	54.0	52.8	56.2	55.9	53.8	54.8	

Mix	TB5H5
Cast Date	2/8/2007

Identifier	Date	Days	Sample	0°	90°	180°	270°	0°	90°	180°	270°	Average	Gen. Aver
			A	3.0	2.9	3.0	3.0	2.9	2.9	2.9	3.0	3.0	
	2/9/2007	1	В	3.0	2.9	2.9	2.9	2.9	2.8	2.9	2.9	2.9	2.9
			С	3.0	2.9	2.9	2.8	3.0	2.9	2.8	3.0	2.9	
			A	3.7	3.6	3.6	3.6	3.6	3.8	3.8	3.8	3.7	3.7
	2/11/2007	3	В	3.6	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	
			С	3.6	3.6	3.7	3.7	3.8	3.8	3.9	3.7	3.7	
			A	6.1	6.4	6.4	6.5	6.1	6.1	6.5	6.5	6.3	
	2/15/2007	7	В	6.1	6.3	6.3	6.5	6.1	6.3	6.5	6.6	6.3	6.4
			С	6.4	6.5	6.5	6.7	6.4	6.5	6.5	6.6	6.5	1
			A	10.7	10.7	11.0	11.3	10.5	10.6	10.6	11.4	10.9	
	2/22/2007	14	В	10.7	11.3	11.2	11.5	10.7	10.9	11.3	11.2	11.1	11.0
			С	11.0	11.1	11.2	11.3	11.1	11.3	11.1	10.8	11.1	
	3/8/2007	28	A	19.3	19.2	19.6	21.3	19.2	19.7	19.6	20.4	19.8	20.4
TB5H5			В	21.1	20.7	20.1	20.9	20.9	20.9	20.8	20.1	20.7	
			С	21.1	22.1	21.0	20.4	19.4	21.0	20.7	19.8	20.7	
		56	A	34.4	36.0	31.8	33.9	34.1	33.5	33.0	34.2	33.9	35.7
	4/5/2007		В	39.3	34.3	37.8	38.8	34.6	35.8	35.8	36.2	36.6	
			С	42.4	37.3	34.2	37.3	34.6	38.9	34.3	35.3	36.8	
			A	51.0	48.5	49.5	49.8	52.5	47.0	51.8	48.5	49.8	51.2
	5/10/2007	91	В	53.4	53.3	50.8	52.9	48.3	54.9	49.7	53.1	52.1	
			С	51.3	55.7	50.6	49.2	52.6	51.6	50.4	53.1	51.8	
			A	42.9	44.4	42.3	45.1	42.1	43.5	38.1	44.5	42.9	
	8/9/2007	182	В	40.6	44.8	47.7	41.8	42.4	42.0	46.2	42.5	43.5	43.3
			С	46.6	43.0	43.7	48.5	47.3	45.1	43.8	30.1	43.5	
			A	80.8	80.8	88.8	93.0	88.5	81.0	89.6	95.4	87.2	
	2/7/2008	364	В	94.7	96.3	95.4	94.0	95.7	96.7	96.2	93.0	95.3	91.9
			С	94.4	96.8	91.5	90.0	93.2	94.9	92.3	91.4	93.1	1

 Mix
 TB6H5

 Cast Date
 2/8/2007

Identifier	Date	Days	Sample	0°	90°	180°	270°	0°	90°	180°	270°	Average	Gen. Aver.
			A	2.8	2.7	2.7	2.7	2.6	2.7	2.7	2.7	2.7	
	2/9/2007	1	В	2.7	2.7	2.7	2.7	2.7	2.6	2.7	2.7	2.7	2.7
			С	2.8	2.7	2.6	2.8	2.7	2.7	2.7	2.8	2.7	
			A	3.5	3.6	3.6	3.6	3.6	3.8	3.8	3.8	3.7	3.7
	2/11/2007	3	В	3.6	3.6	3.8	3.8	3.7	3.7	3.7	3.7	3.7	
			С	3.6	3.6	3.7	3.7	3.8	3.8	3.9	3.7	3.7	
			A	8.3	8.3	8.4	8.6	8.3	8.3	8.4	8.5	8.4	
	2/15/2007	7	В	8.2	8.3	8.4	8.4	8.3	8.4	8.4	8.4	8.4	8.4
			С	8.3	8.4	8.5	8.5	8.2	8.4	8.5	8.6	8.4	
			A	14.2	14.3	14.5	14.7	14.2	14.3	14.6	15.0	14.5	
	2/22/2007	14	В	14.4	14.5	14.5	14.4	14.2	14.3	14.3	14.5	14.4	14.4
			С	14.2	14.4	13.9	14.9	14.1	13.9	14.8	14.9	14.4	
	3/8/2007		A	25.8	25.6	26.1	24.8	25.0	26.3	25.8	25.2	25.6	25.5
TB6H5		28	В	25.0	24.8	25.2	26.3	24.8	25.7	25.4	26.6	25.5	
			С	27.5	25.4	24.0	24.9	24.7	26.2	24.5	26.3	25.4	
		56	A	43.2	41.7	41.0	37.0	37.9	43.7	42.7	40.3	40.9	40.9
	4/5/2007		В	39.2	41.2	42.2	43.2	39.6	42.6	41.6	43.8	41.7	
			С	39.8	41.6	40.8	41.6	40.1	41.9	35.1	39.9	40.1	
			A	54.8	53.0	50.8	51.0	52.9	51.3	53.5	53.0	52.5	1
	5/10/2007	91	В	50.5	51.5	52.6	58.2	50.5	52.8	52.4	55.9	53.1	52.4
			С	53.7	53.1	52.1	50.8	58.0	46.8	48.9	49.1	51.6	
			A	39.2	41.5	42.7	42.4	40.2	44.0	41.4	40.7	41.5	
	8/9/2007	182	В	40.8	44.2	33.4	36.4	41.8	39.6	35.7	40.6	39.1	37.8
			С	38.6	42.8	44.7	26.3	27.3	29.6	23.4	30.1	32.9	1
			A	81.7	79.4	80.0	78.1	8.3.5	81.3	80.5	78.6	79.9	
	2/7/2008	364	В	78.3	80.2	79.0	78.7	77.4	82.1	78.3	80.5	79.3	79.4
			С	79.2	78.0	77.7	77.4	81.8	81.2	77.0	79.7	79.0	

Mix	TB7H5
Cast Date	2/15/2007

Identifier	Date	Days	Sample	0°	90°	180°	270°	0°	90°	180°	270°	Average	Gen. Aver.
			A	3.2	3.1	3.1	3.0	3.0	3.0	3.1	3.2	3.1	
	2/16/2007	1	В	3.2	3.4	3.4	3.3	3.3	3.3	3.3	3.3	3.3	3.2
			С	3.0	3.0	3.1	3.2	3.0	3.1	3.2	3.1	3.1	
			A	3.2	3.3	3.3	3.5	3.3	3.3	3.4	3.5	3.4	
	2/18/2007	3	В	3.4	3.5	3.6	3.7	3.4	3.5	3.5	3.6	3.5	3.4
			С	3.3	3.3	3.4	3.5	3.3	3.4	3.4	3.4	3.4	
			A	4.9	5.0	5.0	5.1	4.8	5.0	5.0	5.2	5.0	
	2/22/2007	7	В	5.1	5.3	5.2	5.2	5.1	5.2	5.2	5.4	5.2	5.1
			С	4.9	4.9	4.9	5.0	4.9	5.0	5.0	5.0	5.0	
	3/1/2007	14	A	8.9	8.9	9.0	9.1	8.8	8.9	8.9	9.0	8.9	9.1
			В	9.0	9.5	9.5	9.6	9.3	9.4	9.6	9.6	9.4	
TB7H5			С	8.6	8.9	9.0	9.1	8.7	8.8	9.1	9.0	8.9	
твина	3/16/2007	29	A	17.0	17.0	18.1	17.4	17.2	17.3	16.4	18.1	17.3	17.6
			В	17.2	17.7	18.3	18.9	18.0	18.5	18.7	18.7	18.3	
			С	17.8	17.4	17.2	16.8	17.0	17.4	17.6	17.6	17.4	
		56	A	28.5	28.2	28.0	26.6	28.4	27.3	27.4	26.6	27.6	28.9
	4/12/2007		В	31.7	30.1	31.1	31.3	31.6	28.8	29.8	31.2	30.7	
			С	28.4	28.2	29.5	27.9	28.8	26.0	28.2	29.3	28.3	
			A	46.8	49.0	36.8	44.3	45.5	46.1	40.7	43.4	44.1	
	5/17/2007	91	В	47.6	48.7	46.2	48.5	46.3	46.8	47.0	47.9	47.4	45.0
			С	44.2	44.0	43.7	45.4	42.5	42.7	42.8	43.6	43.6	
			A	80.7	77.4	79.4	78.9	81.5	77.2	79.8	79.8	79.3	
	2/14/2008	364	В	82.7	83.9	81.3	81.9	81.6	83.2	80.2	83.0	82.2	80.3
			С	78.3	76.9	81.3	80.8	79.7	77.5	81.3	79.9	79.5	7

Mix	TB8H5
Cast Date	2/15/2007

Identifier	Date	Days	Sample	0°	90°	180°	270°	0°	90°	180°	270°	Average	Gen. Aver.
		-	A	3.0	2.9	3.0	3.1	3.0	3.0	3.0	3.1	3.0	1
	2/16/2007	1	В	3.1	3.3	3.1	3.0	3.2	3.2	3.1	3.2	3.2	3.1
			С	3.3	3.3	3.2	3.2	3.2	3.3	3.2	3.1	3.2	
			A	4.1	4.2	4.3	4.4	4.0	4.1	4.2	4.2	4.2	
	2/18/2007	3	В	4.1	4.1	4.3	4.3	4.1	4.2	4.2	4.3	4.2	4.2
			С	4.2	4.3	4.4	4.4	4.3	4.4	4.3	4.2	4.3	
			A	10.5	11.9	11.5	12.0	11.4	11.0	11.6	12.2	11.5	
	2/22/2007	7	В	12.3	11.6	11.4	11.2	12.0	11.9	11.1	12.0	11.7	11.7
			С	11.6	11.9	11.3	12.2	11.3	11.5	12.3	12.0	11.8	
		14	A	21.8	22.2	20.7	22.3	21.0	22.5	21.4	22.2	21.4	22.0 36.0
	3/1/2007		В	22.2	22.3	23.5	21.1	23.4	23.8	21.7	21.9	22.5	
TB8H5			С	21.8	20.9	21.6	22.5	21.3	22.5	22.5	23.2	22.0	
1 Donio	3/16/2007	29	A	35.3	37.5	32.7	36.4	33.8	35.6	34.6	34.9	35.1	
			В	39.3	40.5	36.0	33.4	38.8	39.9	37.0	35.0	37.5	
			С	35.8	32.7	35.2	38.2	33.3	35.2	35.9	37.4	35.5	
		56	A	47.4	50.7	51.0	44.8	49.8	48.0	48.9	43.6	48.0	49.6
	4/12/2007		В	51.9	52.3	51.0	43.9	51.8	50.8	48.9	49.6	50.0	
			С	48.1	47.0	55.0	55.0	51.9	45.5	53.1	50.4	50.8	
			A	60.8	60.7	59.9	58.3	56.3	61.4	59.3	63.3	60.0	
	5/17/2007	91	В	65.1	70.0	67.8	63.8	63.0	68.2	66.4	62.5	65.9	62.9
			С	59.1	59.7	66.7	66.8	59.7	62.0	64.5	63.6	62.8]
			A	63.6	65.8	65.2	60.2	64.5	65.4	65.4	59.0	63.6	
	2/14/2008	364	В	72.7	69.4	66.6	68.3	72.4	69.0	66.2	66.9	68.9	66.3
			С	63.9	63.5	66.5	70.5	66.4	63.4	67.1	70.1	66.4	